These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26381453)

  • 1. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis.
    Shu L; Laurila A; Räsänen K
    Sci Rep; 2015 Sep; 5():14201. PubMed ID: 26381453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.
    Shu L; Suter MJ; Laurila A; Räsänen K
    Oecologia; 2015 Nov; 179(3):617-28. PubMed ID: 25983113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive divergence of the moor frog (Rana arvalis) along an acidification gradient.
    Hangartner S; Laurila A; Räsänen K
    BMC Evol Biol; 2011 Dec; 11():366. PubMed ID: 22182445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantitative genetic basis of adaptive divergence in the moor frog (Rana arvalis) and its implications for gene flow.
    Hangartner S; Laurila A; Räsänen K
    J Evol Biol; 2012 Aug; 25(8):1587-99. PubMed ID: 22686568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifarious selection through environmental change: acidity and predator-mediated adaptive divergence in the moor frog (Rana arvalis).
    Egea-Serrano A; Hangartner S; Laurila A; Räsänen K
    Proc Biol Sci; 2014 Apr; 281(1780):20133266. PubMed ID: 24552840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. II. Adaptive maternal effects.
    Räsänen K; Laurila A; Merilä J
    Evolution; 2003 Feb; 57(2):363-71. PubMed ID: 12683532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context dependent variation in corticosterone and phenotypic divergence of Rana arvalis populations along an acidification gradient.
    Mausbach J; Laurila A; Räsänen K
    BMC Ecol Evol; 2022 Feb; 22(1):11. PubMed ID: 35123416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation.
    Räsänen K; Laurila A; Merilä J
    Evolution; 2003 Feb; 57(2):352-62. PubMed ID: 12683531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive divergence in moor frog (Rana arvalis) populations along an acidification gradient: inferences from Q(st) -F(st) correlations.
    Hangartner S; Laurila A; Räsänen K
    Evolution; 2012 Mar; 66(3):867-881. PubMed ID: 22380445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular phenotyping of maternally mediated parallel adaptive divergence within Rana arvalis and Rana temporaria.
    Shu L; Laurila A; Suter MJ; Räsänen K
    Mol Ecol; 2016 Sep; 25(18):4564-79. PubMed ID: 27482650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term responses of Rana arvalis tadpoles to pH and predator stress: adaptive divergence in behavioural and physiological plasticity?
    Scaramella N; Mausbach J; Laurila A; Stednitz S; Räsänen K
    J Comp Physiol B; 2022 Sep; 192(5):669-682. PubMed ID: 35857071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation to osmotic stress provides protection against ammonium nitrate in Pelophylax perezi embryos.
    Ortiz-Santaliestra ME; Fernández-Benéitez MJ; Lizana M; Marco A
    Environ Pollut; 2010 Mar; 158(3):934-40. PubMed ID: 19800720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Crucial stages of embryogenesis of R. arvalis: Part 1. Linear measurements of embryonic structures].
    Severtsova EA; Severtsov AS
    Ontogenez; 2011; 42(5):378-89. PubMed ID: 22145306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental stress increases skeletal fluctuating asymmetry in the moor frog Rana arvalis.
    Söderman F; van Dongen S; Pakkasmaa S; Merilä J
    Oecologia; 2007 Apr; 151(4):593-604. PubMed ID: 17136394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal investment in egg size: environment- and population-specific effects on offspring performance.
    Räsänen K; Laurila A; Merilä J
    Oecologia; 2005 Feb; 142(4):546-53. PubMed ID: 15688215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular Ca2+ influx is crucial for the early embryonic development of the sea urchin Echinometra lucunter.
    de Araújo Leite JC; Marques-Santos LF
    J Exp Zool B Mol Dev Evol; 2012 Mar; 318(2):123-33. PubMed ID: 22532474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Crucial stages of embryogenesis of Rana arvalis: Part 2. Development of head structures].
    Severtsova EA; Severtsov AS
    Ontogenez; 2012; 43(3):193-201. PubMed ID: 22834134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal transduction and ion channels in guard cells.
    MacRobbie EA
    Philos Trans R Soc Lond B Biol Sci; 1998 Sep; 353(1374):1475-88. PubMed ID: 9800209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-shock, aluminium, and presence of Sphagnum aurantiacum: effects on embryological development in the common frog, Rana temporaria and the moor frog, Rana arvalis.
    Olsson M; Hogstrand C; Dahlberg A; Berglind SA
    Bull Environ Contam Toxicol; 1987 Jul; 39(1):37-44. PubMed ID: 3496932
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanosensitive ion channel MscL controls ionic fluxes during cold and heat stress in Synechocystis.
    Bachin D; Nazarenko LV; Mironov KS; Pisareva T; Allakhverdiev SI; Los DA
    FEMS Microbiol Lett; 2015 Jun; 362(12):fnv090. PubMed ID: 26023201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.