BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26381453)

  • 1. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis.
    Shu L; Laurila A; Räsänen K
    Sci Rep; 2015 Sep; 5():14201. PubMed ID: 26381453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.
    Shu L; Suter MJ; Laurila A; Räsänen K
    Oecologia; 2015 Nov; 179(3):617-28. PubMed ID: 25983113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive divergence of the moor frog (Rana arvalis) along an acidification gradient.
    Hangartner S; Laurila A; Räsänen K
    BMC Evol Biol; 2011 Dec; 11():366. PubMed ID: 22182445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantitative genetic basis of adaptive divergence in the moor frog (Rana arvalis) and its implications for gene flow.
    Hangartner S; Laurila A; Räsänen K
    J Evol Biol; 2012 Aug; 25(8):1587-99. PubMed ID: 22686568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifarious selection through environmental change: acidity and predator-mediated adaptive divergence in the moor frog (Rana arvalis).
    Egea-Serrano A; Hangartner S; Laurila A; Räsänen K
    Proc Biol Sci; 2014 Apr; 281(1780):20133266. PubMed ID: 24552840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. II. Adaptive maternal effects.
    Räsänen K; Laurila A; Merilä J
    Evolution; 2003 Feb; 57(2):363-71. PubMed ID: 12683532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context dependent variation in corticosterone and phenotypic divergence of Rana arvalis populations along an acidification gradient.
    Mausbach J; Laurila A; Räsänen K
    BMC Ecol Evol; 2022 Feb; 22(1):11. PubMed ID: 35123416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation.
    Räsänen K; Laurila A; Merilä J
    Evolution; 2003 Feb; 57(2):352-62. PubMed ID: 12683531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive divergence in moor frog (Rana arvalis) populations along an acidification gradient: inferences from Q(st) -F(st) correlations.
    Hangartner S; Laurila A; Räsänen K
    Evolution; 2012 Mar; 66(3):867-881. PubMed ID: 22380445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular phenotyping of maternally mediated parallel adaptive divergence within Rana arvalis and Rana temporaria.
    Shu L; Laurila A; Suter MJ; Räsänen K
    Mol Ecol; 2016 Sep; 25(18):4564-79. PubMed ID: 27482650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term responses of Rana arvalis tadpoles to pH and predator stress: adaptive divergence in behavioural and physiological plasticity?
    Scaramella N; Mausbach J; Laurila A; Stednitz S; Räsänen K
    J Comp Physiol B; 2022 Sep; 192(5):669-682. PubMed ID: 35857071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation to osmotic stress provides protection against ammonium nitrate in Pelophylax perezi embryos.
    Ortiz-Santaliestra ME; Fernández-Benéitez MJ; Lizana M; Marco A
    Environ Pollut; 2010 Mar; 158(3):934-40. PubMed ID: 19800720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Crucial stages of embryogenesis of R. arvalis: Part 1. Linear measurements of embryonic structures].
    Severtsova EA; Severtsov AS
    Ontogenez; 2011; 42(5):378-89. PubMed ID: 22145306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental stress increases skeletal fluctuating asymmetry in the moor frog Rana arvalis.
    Söderman F; van Dongen S; Pakkasmaa S; Merilä J
    Oecologia; 2007 Apr; 151(4):593-604. PubMed ID: 17136394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal investment in egg size: environment- and population-specific effects on offspring performance.
    Räsänen K; Laurila A; Merilä J
    Oecologia; 2005 Feb; 142(4):546-53. PubMed ID: 15688215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular Ca2+ influx is crucial for the early embryonic development of the sea urchin Echinometra lucunter.
    de Araújo Leite JC; Marques-Santos LF
    J Exp Zool B Mol Dev Evol; 2012 Mar; 318(2):123-33. PubMed ID: 22532474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Crucial stages of embryogenesis of Rana arvalis: Part 2. Development of head structures].
    Severtsova EA; Severtsov AS
    Ontogenez; 2012; 43(3):193-201. PubMed ID: 22834134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal transduction and ion channels in guard cells.
    MacRobbie EA
    Philos Trans R Soc Lond B Biol Sci; 1998 Sep; 353(1374):1475-88. PubMed ID: 9800209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-shock, aluminium, and presence of Sphagnum aurantiacum: effects on embryological development in the common frog, Rana temporaria and the moor frog, Rana arvalis.
    Olsson M; Hogstrand C; Dahlberg A; Berglind SA
    Bull Environ Contam Toxicol; 1987 Jul; 39(1):37-44. PubMed ID: 3496932
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanosensitive ion channel MscL controls ionic fluxes during cold and heat stress in Synechocystis.
    Bachin D; Nazarenko LV; Mironov KS; Pisareva T; Allakhverdiev SI; Los DA
    FEMS Microbiol Lett; 2015 Jun; 362(12):fnv090. PubMed ID: 26023201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.