These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26381835)

  • 41. Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
    Yu HH; Verma R; Yang Y; Tibballs HA; Lui LL; Reser DH; Rosa MG
    Eur J Neurosci; 2010 Mar; 31(6):1043-62. PubMed ID: 20377618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey.
    Tinsley CJ; Webb BS; Barraclough NE; Vincent CJ; Parker A; Derrington AM
    J Neurophysiol; 2003 Aug; 90(2):930-7. PubMed ID: 12711710
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1.
    Mikami A; Newsome WT; Wurtz RH
    J Neurophysiol; 1986 Jun; 55(6):1328-39. PubMed ID: 3734858
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aftereffect of high-speed motion.
    Verstraten FA; van der Smagt MJ; van de Grind WA
    Perception; 1998; 27(9):1055-66. PubMed ID: 10341935
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Columnar organization of directionally selective cells in visual area MT of the macaque.
    Albright TD; Desimone R; Gross CG
    J Neurophysiol; 1984 Jan; 51(1):16-31. PubMed ID: 6693933
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Individual differences in context-dependent effects reveal common mechanisms underlying the direction aftereffect and direction repulsion.
    McGovern DP; Walsh KS; Bell J; Newell FN
    Vision Res; 2017 Dec; 141():109-116. PubMed ID: 27756699
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Complex interactions between spatial, orientation, and motion cues for biological motion perception across visual space.
    Thurman SM; Lu H
    J Vis; 2013 Feb; 13(2):8. PubMed ID: 23390322
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A biologically-based computational model of visual cortex that overcomes the X-junction illusion.
    Eskikand PZ; Kameneva T; Ibbotson MR; Burkitt AN; Grayden DB
    Neural Netw; 2018 Jun; 102():10-20. PubMed ID: 29510263
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Orientation sensitive properties of visually driven neurons in extrastriate area 21a of cat cortex.
    Harutiunian-Kozak BA; Grigorian GG; Kozak JA; Sharanbekian AB; Sarkisyan GS; Khachvankian DK
    Arch Ital Biol; 2008 Jun; 146(2):119-30. PubMed ID: 18822799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perceived motion in complementary afterimages: verification of a neural network theory.
    Kim H; Francis G
    Spat Vis; 2000; 13(1):67-86. PubMed ID: 10688230
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The different mechanisms of the motion direction illusion and aftereffect.
    Wiese M; Wenderoth P
    Vision Res; 2007 Jun; 47(14):1963-7. PubMed ID: 17512965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of background motion on the motion aftereffect.
    Smith AT; Musselwhite MJ; Hammond P
    Vision Res; 1984; 24(9):1075-82. PubMed ID: 6506472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complete interocular transfer of motion adaptation effects on motion coherence thresholds.
    Raymond JE
    Vision Res; 1993 Sep; 33(13):1865-70. PubMed ID: 8266642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form.
    Desimone R; Schein SJ
    J Neurophysiol; 1987 Mar; 57(3):835-68. PubMed ID: 3559704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The direction aftereffect is driven by adaptation of local motion detectors.
    Curran W; Clifford CW; Benton CP
    Vision Res; 2006 Nov; 46(25):4270-8. PubMed ID: 17034831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Radial biases in the processing of motion and motion-defined contours by human visual cortex.
    Clifford CW; Mannion DJ; McDonald JS
    J Neurophysiol; 2009 Nov; 102(5):2974-81. PubMed ID: 19759326
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gaze modulation of visual aftereffects.
    Nishida S; Motoyoshi I; Andersen RA; Shimojo S
    Vision Res; 2003 Mar; 43(6):639-49. PubMed ID: 12604100
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Asymmetric transfer of the dynamic motion aftereffect between first- and second-order cues and among different second-order cues.
    Schofield AJ; Ledgeway T; Hutchinson CV
    J Vis; 2007 Jun; 7(8):1. PubMed ID: 17685808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Common (and multiple) neural substrates for static and dynamic motion after-effects: a rTMS investigation.
    Campana G; Maniglia M; Pavan A
    Cortex; 2013 Oct; 49(9):2590-4. PubMed ID: 23927999
    [TBL] [Abstract][Full Text] [Related]  

  • 60. End-stopping and the aperture problem: two-dimensional motion signals in macaque V1.
    Pack CC; Livingstone MS; Duffy KR; Born RT
    Neuron; 2003 Aug; 39(4):671-80. PubMed ID: 12925280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.