BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26381898)

  • 41. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin.
    Jain S; Rathi VV; Jain AK; Das M; Godugu C
    Nanomedicine (Lond); 2012 Sep; 7(9):1311-37. PubMed ID: 22583576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Implementation of mixture design for formulation of albumin containing enteric-coated spray-dried microparticles.
    Shastri PN; Ubale RV; D'Souza MJ
    Drug Dev Ind Pharm; 2013 Feb; 39(2):164-75. PubMed ID: 22591196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches.
    Fonte P; Araújo F; Silva C; Pereira C; Reis S; Santos HA; Sarmento B
    Biotechnol Adv; 2015 Nov; 33(6 Pt 3):1342-54. PubMed ID: 25728065
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tf ligand-receptor-mediated exenatide-Zn
    Zhang L; Shi Y; Song Y; Duan D; Zhang X; Sun K; Li Y
    J Drug Target; 2018 Dec; 26(10):931-940. PubMed ID: 29619854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pharmacokinetics, in vitro and in vivo correlation, and efficacy of exenatide microspheres in diabetic rats.
    Li X; Zhao Z; Li L; Zhou T; Lu W
    Drug Deliv; 2015 Jan; 22(1):86-93. PubMed ID: 24467493
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of magnesium stearate on the physicochemical and pharmacodynamic characteristics of insulin-loaded Eudragit entrapped mucoadhesive microspheres.
    Momoh MA; Kenechukwu FC; Nnamani PO; Umetiti JC
    Drug Deliv; 2015; 22(6):837-48. PubMed ID: 24670092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Halloysite nanotube-embedded microparticles for intestine-targeted co-delivery of biopharmaceuticals.
    Homayun B; Choi HJ
    Int J Pharm; 2020 Apr; 579():119152. PubMed ID: 32081802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exenatide: effect of injection time on postprandial glucose in patients with Type 2 diabetes.
    Linnebjerg H; Kothare PA; Skrivanek Z; de la Peña A; Atkins M; Ernest CS; Trautmann ME
    Diabet Med; 2006 Mar; 23(3):240-5. PubMed ID: 16492205
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In-vitro/in-vivo characterization of trans-resveratrol-loaded nanoparticulate drug delivery system for oral administration.
    Singh G; Pai RS
    J Pharm Pharmacol; 2014 Aug; 66(8):1062-76. PubMed ID: 24779896
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of PEGylated exendin-4 released from poly (lactic-co-glycolic acid) microspheres for antidiabetic therapy.
    Lim SM; Eom HN; Jiang HH; Sohn M; Lee KC
    J Pharm Sci; 2015 Jan; 104(1):72-80. PubMed ID: 25407390
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogel Drug Delivery System Using Self-Cleaving Covalent Linkers for Once-a-Week Administration of Exenatide.
    Schneider EL; Henise J; Reid R; Ashley GW; Santi DV
    Bioconjug Chem; 2016 May; 27(5):1210-5. PubMed ID: 26930186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery.
    Yun Y; Cho YW; Park K
    Adv Drug Deliv Rev; 2013 Jun; 65(6):822-32. PubMed ID: 23123292
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interspecies modeling and prediction of human exenatide pharmacokinetics.
    Chen T; Mager DE; Kagan L
    Pharm Res; 2013 Mar; 30(3):751-60. PubMed ID: 23229855
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeted nanoparticles with novel non-peptidic ligands for oral delivery.
    des Rieux A; Pourcelle V; Cani PD; Marchand-Brynaert J; Préat V
    Adv Drug Deliv Rev; 2013 Jun; 65(6):833-44. PubMed ID: 23454185
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of aminoalkyl methacrylate copolymer E/HCl on in vivo absorption of poorly water-soluble drug.
    Yoshida T; Kurimoto I; Yoshihara K; Umejima H; Ito N; Watanabe S; Sako K; Kikuchi A
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1698-705. PubMed ID: 23062024
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oral delivery of therapeutic protein/peptide for diabetes--future perspectives.
    Rekha MR; Sharma CP
    Int J Pharm; 2013 Jan; 440(1):48-62. PubMed ID: 22503954
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oral delivery of proteins by biodegradable nanoparticles.
    Bakhru SH; Furtado S; Morello AP; Mathiowitz E
    Adv Drug Deliv Rev; 2013 Jun; 65(6):811-21. PubMed ID: 23608641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs.
    Cai Z; Wang Y; Zhu LJ; Liu ZQ
    Curr Drug Metab; 2010 Feb; 11(2):197-207. PubMed ID: 20384585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multifunctional Poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin Amphiphilic Copolymer as an Oral High-Performance Delivery Carrier of Tacrolimus.
    Zhang D; Pan X; Wang S; Zhai Y; Guan J; Fu Q; Hao X; Qi W; Wang Y; Lian H; Liu X; Wang Y; Sun Y; He Z; Sun J
    Mol Pharm; 2015 Jul; 12(7):2337-51. PubMed ID: 26024817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Complexation hydrogels for oral insulin delivery: effects of polymer dosing on in vivo efficacy.
    Tuesca A; Nakamura K; Morishita M; Joseph J; Peppas N; Lowman A
    J Pharm Sci; 2008 Jul; 97(7):2607-18. PubMed ID: 17876768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.