These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26381898)

  • 61. Population pharmacokinetics of liraglutide, a once-daily human glucagon-like peptide-1 analog, in healthy volunteers and subjects with type 2 diabetes, and comparison to twice-daily exenatide.
    Watson E; Jonker DM; Jacobsen LV; Ingwersen SH
    J Clin Pharmacol; 2010 Aug; 50(8):886-94. PubMed ID: 20133507
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Eudragit
    Mooranian A; Zamani N; Mikov M; Goločorbin-Kon S; Stojanovic G; Arfuso F; Al-Salami H
    Ther Deliv; 2018 Nov; 9(11):811-821. PubMed ID: 30444461
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery.
    Ismail R; Phan TNQ; Laffleur F; Csóka I; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2020 Jul; 152():10-17. PubMed ID: 32371152
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs.
    Griffin BT; Guo J; Presas E; Donovan MD; Alonso MJ; O'Driscoll CM
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt B):367-380. PubMed ID: 27320644
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Improvement of intestinal absorption of peptide and protein drugs by chemical modification with fatty acids].
    Yamamoto A
    Nihon Rinsho; 1998 Mar; 56(3):601-7. PubMed ID: 9549343
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel approach using functional peptides for efficient intestinal absorption of insulin.
    Morishita M; Kamei N; Ehara J; Isowa K; Takayama K
    J Control Release; 2007 Apr; 118(2):177-84. PubMed ID: 17270307
    [TBL] [Abstract][Full Text] [Related]  

  • 67. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability?
    Malhaire H; Gimel JC; Roger E; Benoît JP; Lagarce F
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt B):320-336. PubMed ID: 27058155
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery.
    Makhlof A; Tozuka Y; Takeuchi H
    Eur J Pharm Sci; 2011 Apr; 42(5):445-51. PubMed ID: 21182939
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Novel double coated nanocapsules for intestinal delivery and enhanced oral bioavailability of tacrolimus, a P-gp substrate drug.
    Nassar T; Rom A; Nyska A; Benita S
    J Control Release; 2009 Jan; 133(1):77-84. PubMed ID: 18822327
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide.
    Zhu Z; Luo H; Lu W; Luan H; Wu Y; Luo J; Wang Y; Pi J; Lim CY; Wang H
    Pharm Res; 2014 Dec; 31(12):3348-60. PubMed ID: 24867426
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Influence of polymers ratio on insulin-loaded nanoparticles based on poly-epsilon-caprolactone and Eudragit RS for oral administration.
    Socha M; Sapin A; Damgé C; Maincent P
    Drug Deliv; 2009 Nov; 16(8):430-6. PubMed ID: 19839787
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine.
    Wang T; Wang N; Song H; Xi X; Wang J; Hao A; Li T
    Eur J Pharm Sci; 2011 Sep; 44(1-2):127-35. PubMed ID: 21742030
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dissolution and bioavailability of lercanidipine-hydroxypropylmethyl cellulose nanoparticles with surfactant.
    Ha ES; Choo GH; Baek IH; Kim JS; Cho W; Jung YS; Jin SE; Hwang SJ; Kim MS
    Int J Biol Macromol; 2015 Jan; 72():218-22. PubMed ID: 25159878
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Studies on lactoferrin nanoparticles of gambogic acid for oral delivery.
    Zhang ZH; Wang XP; Ayman WY; Munyendo WL; Lv HX; Zhou JP
    Drug Deliv; 2013 Feb; 20(2):86-93. PubMed ID: 23495734
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In-vitro release of acyclovir loaded Eudragit RLPO(®) nanoparticles for sustained drug delivery.
    Gandhi A; Jana S; Sen KK
    Int J Biol Macromol; 2014 Jun; 67():478-82. PubMed ID: 24755259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications.
    Sung HW; Sonaje K; Liao ZX; Hsu LW; Chuang EY
    Acc Chem Res; 2012 Apr; 45(4):619-29. PubMed ID: 22236133
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Design of lipotomes as a novel dual functioning nanocarrier for bioavailability enhancement of lacidipine: in-vitro and in-vivo characterization.
    ElKasabgy NA; Elsayed I; Elshafeey AH
    Int J Pharm; 2014 Sep; 472(1-2):369-79. PubMed ID: 24979531
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Design of nanoparticles composed of graft copolymers for oral peptide delivery.
    Sakuma S; Hayashi M; Akashi M
    Adv Drug Deliv Rev; 2001 Mar; 47(1):21-37. PubMed ID: 11251243
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pharmacokinetics of an oral drug (acetaminophen) administered at various times in relation to subcutaneous injection of exenatide (exendin-4) in healthy subjects.
    Blase E; Taylor K; Gao HY; Wintle M; Fineman M
    J Clin Pharmacol; 2005 May; 45(5):570-7. PubMed ID: 15831781
    [TBL] [Abstract][Full Text] [Related]  

  • 80. pH-sensitive and mucoadhesive thiolated Eudragit-coated chitosan microspheres.
    Quan JS; Jiang HL; Kim EM; Jeong HJ; Choi YJ; Guo DD; Yoo MK; Lee HG; Cho CS
    Int J Pharm; 2008 Jul; 359(1-2):205-10. PubMed ID: 18490120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.