BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2638191)

  • 1. The substituent effect on complex formation between alpha-trypsin and para-substituted benzamidinium ions: a thermodynamic study.
    Rogana E; Penha-Silva N; Mares-Guia M
    Braz J Med Biol Res; 1989; 22(10):1177-90. PubMed ID: 2638191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis of binding of p-substituted benzamidines to trypsin.
    Talhout R; Engberts JB
    Eur J Biochem; 2001 Mar; 268(6):1554-60. PubMed ID: 11248672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding binding affinity: a combined isothermal titration calorimetry/molecular dynamics study of the binding of a series of hydrophobically modified benzamidinium chloride inhibitors to trypsin.
    Talhout R; Villa A; Mark AE; Engberts JB
    J Am Chem Soc; 2003 Sep; 125(35):10570-9. PubMed ID: 12940739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zymogen activation: effect of peptides sequentially related to the bovine beta-trypsin N-terminus on Kazal inhibitor and benzamidine binding to bovine trypsinogen.
    Ascenzi P; Coletta M; Amiconi G; Bolognesi M; Guarneri M; Menegatti E
    J Mol Recognit; 1988 Jun; 1(3):130-7. PubMed ID: 3273224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of the trypsin inhibitor from white mustard (Sinapis alba L.) seeds to bovine beta-trypsin: thermodynamic study.
    Menegatti E; Boggian M; Ascenzi P; Luisi PL
    J Enzyme Inhib; 1987; 2(1):67-71. PubMed ID: 3508170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive parabolic inhibition of bovine trypsin by bis-benzamidines.
    Junqueira RG; Silva E; Mares-Guia M
    Braz J Med Biol Res; 1992; 25(9):873-87. PubMed ID: 1342833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The two alpha 2-macroglobulin-bound trypsin molecules have different affinities for the basic pancreatic trypsin inhibitor.
    Tourbez M; Dimicoli JL; Pochon F; Bieth JG
    Biochim Biophys Acta; 1984 Aug; 789(1):74-9. PubMed ID: 6205695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of substrates and reversible inhibitors binding to the active site cleft of human alpha-thrombin.
    De Cristofaro R; Landolfi R
    J Mol Biol; 1994 Jun; 239(4):569-77. PubMed ID: 8006969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure dependence of trypsin-catalyzed hydrolyses of specific substrates.
    Kunugi S; Fukuda M; Ise N
    Biochim Biophys Acta; 1982 May; 704(1):107-13. PubMed ID: 7093284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombin-like enzyme from Lachesis muta muta venom: isolation and topographical analysis of its active site structure by means of the binding of amidines and guanidines as competitive inhibitors.
    Magalhães A; Monteiro MR; Magalhães HP; Mares-Guia M; Rogana E
    Toxicon; 1997 Oct; 35(10):1549-59. PubMed ID: 9428102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plausible identification of the secondary binding site in trypsin and trypsinogen.
    Andrade MH; Silva E; Mares-Guia M
    Braz J Med Biol Res; 1990; 23(12):1223-31. PubMed ID: 2136554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman spectroscopic studies of the interactions between trypsin and a competitive inhibitor.
    Dupaix A; Bechet JJ; Yon J; Merlin JC; Delhaye M; Hill M
    Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4223-7. PubMed ID: 1060102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic characterization of rat tissue kallikrein using N alpha-substituted arginine 4-nitroanilides and N alpha-benzoyl-L-arginine ethyl ester as substrates.
    Sousa MO; Rodrigues CV; Pena HB; Alvarenga MG; Machado-Coelho GL; Santoro MM; Juliano MA; Juliano L; Figueiredo AF
    Braz J Med Biol Res; 1996 Mar; 29(3):327-34. PubMed ID: 8736125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse substrates: novel synthetic substrates for trypsin and related enzymes.
    Tanizawa K; Nakayama H; Fujioka T; Nozawa M; Nakaona M; Kanaoka Y
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(1):61-6. PubMed ID: 6177609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of trypsin-catalyzed hydrolysis determined by isothermal titration calorimetry.
    Maximova K; Trylska J
    Anal Biochem; 2015 Oct; 486():24-34. PubMed ID: 26119333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Conformational aspects of beta-trypsin interaction with substrates and pancreatic trypsin inhibitor. I. Conformational properties of residues in the enzyme-active center and the structure of a non-valent enzyme-substrate complex].
    Godzhaev NM; Aliev RE; Popov EM
    Mol Biol (Mosk); 1986; 20(1):102-19. PubMed ID: 3951435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent delta C0p generated by a shift in equilibrium between macrostates of an enzyme.
    Fisher HF; Colen AH; Medary RT
    Nature; 1981 Jul; 292(5820):271-2. PubMed ID: 7254321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the effect of the amidinium group and the phenyl ring on the thermodynamics of binding of benzamidinium chloride to trypsin.
    Talhout R; Engberts JB
    Org Biomol Chem; 2004 Nov; 2(21):3071-4. PubMed ID: 15505709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.