These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 2638191)
1. The substituent effect on complex formation between alpha-trypsin and para-substituted benzamidinium ions: a thermodynamic study. Rogana E; Penha-Silva N; Mares-Guia M Braz J Med Biol Res; 1989; 22(10):1177-90. PubMed ID: 2638191 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic analysis of binding of p-substituted benzamidines to trypsin. Talhout R; Engberts JB Eur J Biochem; 2001 Mar; 268(6):1554-60. PubMed ID: 11248672 [TBL] [Abstract][Full Text] [Related]
3. Understanding binding affinity: a combined isothermal titration calorimetry/molecular dynamics study of the binding of a series of hydrophobically modified benzamidinium chloride inhibitors to trypsin. Talhout R; Villa A; Mark AE; Engberts JB J Am Chem Soc; 2003 Sep; 125(35):10570-9. PubMed ID: 12940739 [TBL] [Abstract][Full Text] [Related]
4. Zymogen activation: effect of peptides sequentially related to the bovine beta-trypsin N-terminus on Kazal inhibitor and benzamidine binding to bovine trypsinogen. Ascenzi P; Coletta M; Amiconi G; Bolognesi M; Guarneri M; Menegatti E J Mol Recognit; 1988 Jun; 1(3):130-7. PubMed ID: 3273224 [TBL] [Abstract][Full Text] [Related]
5. Binding of the trypsin inhibitor from white mustard (Sinapis alba L.) seeds to bovine beta-trypsin: thermodynamic study. Menegatti E; Boggian M; Ascenzi P; Luisi PL J Enzyme Inhib; 1987; 2(1):67-71. PubMed ID: 3508170 [TBL] [Abstract][Full Text] [Related]
6. Competitive parabolic inhibition of bovine trypsin by bis-benzamidines. Junqueira RG; Silva E; Mares-Guia M Braz J Med Biol Res; 1992; 25(9):873-87. PubMed ID: 1342833 [TBL] [Abstract][Full Text] [Related]
7. The two alpha 2-macroglobulin-bound trypsin molecules have different affinities for the basic pancreatic trypsin inhibitor. Tourbez M; Dimicoli JL; Pochon F; Bieth JG Biochim Biophys Acta; 1984 Aug; 789(1):74-9. PubMed ID: 6205695 [TBL] [Abstract][Full Text] [Related]
8. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes. Nozawa M; Tanizawa K; Kanaoka Y J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamics of substrates and reversible inhibitors binding to the active site cleft of human alpha-thrombin. De Cristofaro R; Landolfi R J Mol Biol; 1994 Jun; 239(4):569-77. PubMed ID: 8006969 [TBL] [Abstract][Full Text] [Related]
10. Pressure dependence of trypsin-catalyzed hydrolyses of specific substrates. Kunugi S; Fukuda M; Ise N Biochim Biophys Acta; 1982 May; 704(1):107-13. PubMed ID: 7093284 [TBL] [Abstract][Full Text] [Related]
11. Thrombin-like enzyme from Lachesis muta muta venom: isolation and topographical analysis of its active site structure by means of the binding of amidines and guanidines as competitive inhibitors. Magalhães A; Monteiro MR; Magalhães HP; Mares-Guia M; Rogana E Toxicon; 1997 Oct; 35(10):1549-59. PubMed ID: 9428102 [TBL] [Abstract][Full Text] [Related]
12. A plausible identification of the secondary binding site in trypsin and trypsinogen. Andrade MH; Silva E; Mares-Guia M Braz J Med Biol Res; 1990; 23(12):1223-31. PubMed ID: 2136554 [TBL] [Abstract][Full Text] [Related]
13. Resonance Raman spectroscopic studies of the interactions between trypsin and a competitive inhibitor. Dupaix A; Bechet JJ; Yon J; Merlin JC; Delhaye M; Hill M Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4223-7. PubMed ID: 1060102 [TBL] [Abstract][Full Text] [Related]
14. Kinetic characterization of rat tissue kallikrein using N alpha-substituted arginine 4-nitroanilides and N alpha-benzoyl-L-arginine ethyl ester as substrates. Sousa MO; Rodrigues CV; Pena HB; Alvarenga MG; Machado-Coelho GL; Santoro MM; Juliano MA; Juliano L; Figueiredo AF Braz J Med Biol Res; 1996 Mar; 29(3):327-34. PubMed ID: 8736125 [TBL] [Abstract][Full Text] [Related]
15. Inverse substrates: novel synthetic substrates for trypsin and related enzymes. Tanizawa K; Nakayama H; Fujioka T; Nozawa M; Nakaona M; Kanaoka Y Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(1):61-6. PubMed ID: 6177609 [TBL] [Abstract][Full Text] [Related]
17. [Conformational aspects of beta-trypsin interaction with substrates and pancreatic trypsin inhibitor. I. Conformational properties of residues in the enzyme-active center and the structure of a non-valent enzyme-substrate complex]. Godzhaev NM; Aliev RE; Popov EM Mol Biol (Mosk); 1986; 20(1):102-19. PubMed ID: 3951435 [TBL] [Abstract][Full Text] [Related]
18. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants. Qureshi SH; Moza B; Yadav S; Ahmad F Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383 [TBL] [Abstract][Full Text] [Related]
19. Temperature-dependent delta C0p generated by a shift in equilibrium between macrostates of an enzyme. Fisher HF; Colen AH; Medary RT Nature; 1981 Jul; 292(5820):271-2. PubMed ID: 7254321 [TBL] [Abstract][Full Text] [Related]
20. Probing the effect of the amidinium group and the phenyl ring on the thermodynamics of binding of benzamidinium chloride to trypsin. Talhout R; Engberts JB Org Biomol Chem; 2004 Nov; 2(21):3071-4. PubMed ID: 15505709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]