These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26382147)

  • 1. DFT+U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS.
    Pham HH; Barkema GT; Wang LW
    Phys Chem Chem Phys; 2015 Oct; 17(39):26270-6. PubMed ID: 26382147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of doping on electronic structure and photocatalytic behavior of amorphous TiO2.
    Ghuman KK; Singh CV
    J Phys Condens Matter; 2013 Nov; 25(47):475501. PubMed ID: 24172752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the local structure of dilute Cu dopants in fluorescent ZnS nanocrystals using EXAFS.
    Car B; Medling S; Corrado C; Bridges F; Zhang JZ
    Nanoscale; 2011 Oct; 3(10):4182-9. PubMed ID: 21850357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals.
    Corrado C; Jiang Y; Oba F; Kozina M; Bridges F; Zhang JZ
    J Phys Chem A; 2009 Apr; 113(16):3830-9. PubMed ID: 19170574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red Emission from Copper-Vacancy Color Centers in Zinc Sulfide Colloidal Nanocrystals.
    Thompson SM; Şahin C; Yang S; Flatté ME; Murray CB; Bassett LC; Kagan CR
    ACS Nano; 2023 Mar; 17(6):5963-5973. PubMed ID: 36892080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alloying ZnS in the hexagonal phase to create high-performing transparent conducting materials.
    Faghaninia A; Bhatt KR; Lo CS
    Phys Chem Chem Phys; 2016 Aug; 18(32):22628-35. PubMed ID: 27477188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New energy with ZnS: novel applications for a standard transparent compound.
    D'Amico P; Calzolari A; Ruini A; Catellani A
    Sci Rep; 2017 Dec; 7(1):16805. PubMed ID: 29196653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission.
    Liu B; Bando Y; Jiang X; Li C; Fang X; Zeng H; Terao T; Tang C; Mitome M; Golberg D
    Nanotechnology; 2010 Sep; 21(37):375601. PubMed ID: 20714051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge compensation in trivalent cation doped bulk rutile TiO2.
    Iwaszuk A; Nolan M
    J Phys Condens Matter; 2011 Aug; 23(33):334207. PubMed ID: 21813953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Al3+ co-doping on the dopant local structure, optical properties, and exciton dynamics in Cu+-doped ZnSe nanocrystals.
    Gul S; Cooper JK; Glans PA; Guo J; Yachandra VK; Yano J; Zhang JZ
    ACS Nano; 2013 Oct; 7(10):8680-92. PubMed ID: 24028556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen vacancy and hole conduction in amorphous TiO2.
    Pham HH; Wang LW
    Phys Chem Chem Phys; 2015 Jan; 17(1):541-50. PubMed ID: 25406575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized nano-solid-solution induced by Cu doping in ZnS for efficient solar hydrogen generation.
    Li N; Zhang L; Zhou J; Jing D; Sun Y
    Dalton Trans; 2014 Aug; 43(30):11533-41. PubMed ID: 24875006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of composition dependent structural and optical properties of the Zn(1-x)Cd(x)S, coaxial Zn(0.99-x)Cd(x)Cu(0.01)S/ZnS, Zn(0.99-x)Cd(x)Mn(0.01)S nanorods generated by a one-step hydrothermal process.
    Han D; Cao J; Yang S; Yang J; Wang B; Fan L; Liu Q; Wang T; Niu H
    Dalton Trans; 2014 Jul; 43(28):11019-26. PubMed ID: 24911881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium alginate multilayer films.
    Wang L; Sun Y; Xie X
    Luminescence; 2014 May; 29(3):288-92. PubMed ID: 23818238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu(1.94)S-ZnS heterostructured nanocrystals.
    Ye H; Tang A; Huang L; Wang Y; Yang C; Hou Y; Peng H; Zhang F; Teng F
    Langmuir; 2013 Jul; 29(27):8728-35. PubMed ID: 23767977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of substitutional doping on Cu vacancy formation in Cu
    Beronio ERA; Colambo IR; Padama AAB
    Phys Chem Chem Phys; 2021 Apr; 23(14):8800-8808. PubMed ID: 33876039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study.
    Liu B; Su WS; Wu BR
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Cu emission in ZnS : Cu,Cl/ZnS core-shell nanocrystals.
    Corrado C; Hawker M; Livingston G; Medling S; Bridges F; Zhang JZ
    Nanoscale; 2010 Jul; 2(7):1213-21. PubMed ID: 20648352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures.
    Han SK; Gong M; Yao HB; Wang ZM; Yu SH
    Angew Chem Int Ed Engl; 2012 Jun; 51(26):6365-8. PubMed ID: 22645017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition.
    Pan D; An L; Sun Z; Hou W; Yang Y; Yang Z; Lu Y
    J Am Chem Soc; 2008 Apr; 130(17):5620-1. PubMed ID: 18396869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.