These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 26382424)
21. Non-monotonic dependence of water reorientation dynamics on surface hydrophilicity: competing effects of the hydration structure and hydrogen-bond strength. Stirnemann G; Castrillón SR; Hynes JT; Rossky PJ; Debenedetti PG; Laage D Phys Chem Chem Phys; 2011 Nov; 13(44):19911-7. PubMed ID: 21897944 [TBL] [Abstract][Full Text] [Related]
22. Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models. Li L; Shirazi-Adl A; Buschmann MD Biorheology; 2003; 40(1-3):227-33. PubMed ID: 12454409 [TBL] [Abstract][Full Text] [Related]
23. Physicochemical basis for water-actuated movement and stress generation in nonliving plant tissues. Bertinetti L; Fischer FD; Fratzl P Phys Rev Lett; 2013 Dec; 111(23):238001. PubMed ID: 24476305 [TBL] [Abstract][Full Text] [Related]
24. Molecular dynamics simulation of protein adsorption at fluid interfaces: a comparison of all-atom and coarse-grained models. Euston SR Biomacromolecules; 2010 Oct; 11(10):2781-7. PubMed ID: 20839848 [TBL] [Abstract][Full Text] [Related]
25. Driving forces for adsorption of amphiphilic peptides to the air-water interface. Engin O; Villa A; Sayar M; Hess B J Phys Chem B; 2010 Sep; 114(34):11093-101. PubMed ID: 20687527 [TBL] [Abstract][Full Text] [Related]
26. Molecular simulation of fibronectin adsorption onto polyurethane surfaces. Panos M; Sen TZ; Ahunbay MG Langmuir; 2012 Aug; 28(34):12619-28. PubMed ID: 22856639 [TBL] [Abstract][Full Text] [Related]
27. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface. Engin O; Sayar M J Phys Chem B; 2012 Feb; 116(7):2198-207. PubMed ID: 22268576 [TBL] [Abstract][Full Text] [Related]
28. Mimicking coarse-grained simulations without coarse-graining: enhanced sampling by damping short-range interactions. Wei D; Wang F J Chem Phys; 2010 Aug; 133(8):084101. PubMed ID: 20815554 [TBL] [Abstract][Full Text] [Related]
29. Adsorption of n-pentane on mesoporous silica and adsorbent deformation. Gor GY; Paris O; Prass J; Russo PA; Ribeiro Carrott MM; Neimark AV Langmuir; 2013 Jul; 29(27):8601-8. PubMed ID: 23758155 [TBL] [Abstract][Full Text] [Related]
30. Size effects on water adsorbed on hydrophobic probes at the nanometric scale. Calero C; Gordillo MC; Martí J J Chem Phys; 2013 Jun; 138(21):214702. PubMed ID: 23758390 [TBL] [Abstract][Full Text] [Related]
31. Water Adsorption in Wood Microfibril-Hemicellulose System: Role of the Crystalline-Amorphous Interface. Kulasinski K; Guyer R; Derome D; Carmeliet J Biomacromolecules; 2015 Sep; 16(9):2972-8. PubMed ID: 26313656 [TBL] [Abstract][Full Text] [Related]
32. Free energetics and the role of water in the permeation of methyl guanidinium across the bilayer-water interface: insights from molecular dynamics simulations using charge equilibration potentials. Ou S; Lucas TR; Zhong Y; Bauer BA; Hu Y; Patel S J Phys Chem B; 2013 Apr; 117(13):3578-92. PubMed ID: 23409975 [TBL] [Abstract][Full Text] [Related]
33. On the coupling between the dynamics of protein and water. Gavrilov Y; Leuchter JD; Levy Y Phys Chem Chem Phys; 2017 Mar; 19(12):8243-8257. PubMed ID: 28277584 [TBL] [Abstract][Full Text] [Related]
34. Solubility of cellulose in supercritical water studied by molecular dynamics simulations. Tolonen LK; Bergenstråhle-Wohlert M; Sixta H; Wohlert J J Phys Chem B; 2015 Apr; 119(13):4739-48. PubMed ID: 25756596 [TBL] [Abstract][Full Text] [Related]
35. Water structuring over the hydrophobic surface of cellulose. Miyamoto H; Schnupf U; Brady JW J Agric Food Chem; 2014 Nov; 62(46):11017-23. PubMed ID: 25365241 [TBL] [Abstract][Full Text] [Related]
36. Thermodynamic and Structural Evidence for Reduced Hydrogen Bonding among Water Molecules near Small Hydrophobic Solutes. Kim J; Tian Y; Wu J J Phys Chem B; 2015 Sep; 119(36):12108-16. PubMed ID: 26264740 [TBL] [Abstract][Full Text] [Related]
37. Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface. Penna MJ; Mijajlovic M; Tamerler C; Biggs MJ Soft Matter; 2015 Jul; 11(26):5192-203. PubMed ID: 25920450 [TBL] [Abstract][Full Text] [Related]
38. Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: a molecular dynamics study. Ma H; Ma J J Chem Phys; 2011 Aug; 135(5):054504. PubMed ID: 21823709 [TBL] [Abstract][Full Text] [Related]
39. A microscopically motivated model for the swelling-induced drastic softening of hydrogen-bond dominated biopolymer networks. Cohen N; Eisenbach CD Acta Biomater; 2019 Sep; 96():303-309. PubMed ID: 31319201 [TBL] [Abstract][Full Text] [Related]
40. Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by 1H solid-state NMR. Grünberg B; Emmler T; Gedat E; Shenderovich I; Findenegg GH; Limbach HH; Buntkowsky G Chemistry; 2004 Nov; 10(22):5689-96. PubMed ID: 15470692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]