These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 26382470)
1. Conductance stability in chaotic and integrable quantum dots with random impurities. Wang G; Ying L; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022901. PubMed ID: 26382470 [TBL] [Abstract][Full Text] [Related]
2. Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics. Wang GL; Ying L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052908. PubMed ID: 23767599 [TBL] [Abstract][Full Text] [Related]
3. Conductance fluctuations in chaotic bilayer graphene quantum dots. Bao R; Huang L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258 [TBL] [Abstract][Full Text] [Related]
4. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots. Huang L; Yang R; Lai YC; Ferry DK J Phys Condens Matter; 2013 Feb; 25(8):085502. PubMed ID: 23343960 [TBL] [Abstract][Full Text] [Related]
5. Quantum-chaotic scattering effects in semiconductor microstructures. Baranger HU; Jalabert RA; Stone AD Chaos; 1993 Oct; 3(4):665-682. PubMed ID: 12780071 [TBL] [Abstract][Full Text] [Related]
6. Role of orbital dynamics in spin relaxation and weak antilocalization in quantum dots. Zaitsev O; Frustaglia D; Richter K Phys Rev Lett; 2005 Jan; 94(2):026809. PubMed ID: 15698215 [TBL] [Abstract][Full Text] [Related]
7. Order and chaos in semiconductor microstructures. Lin WA; Delos JB; Jensen RV Chaos; 1993 Oct; 3(4):655-664. PubMed ID: 12780070 [TBL] [Abstract][Full Text] [Related]
8. Universality in chaotic quantum transport: the concordance between random-matrix and semiclassical theories. Berkolaiko G; Kuipers J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):045201. PubMed ID: 22680530 [TBL] [Abstract][Full Text] [Related]
9. Quantum-dot ground-state energies and spin polarizations: soft versus hard chaos. Ullmo D; Nagano T; Tomsovic S Phys Rev Lett; 2003 May; 90(17):176801. PubMed ID: 12786089 [TBL] [Abstract][Full Text] [Related]
10. Theory of chaos regularization of tunneling in chaotic quantum dots. Lee MJ; Antonsen TM; Ott E; Pecora LM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056212. PubMed ID: 23214862 [TBL] [Abstract][Full Text] [Related]
11. Harnessing quantum transport by transient chaos. Yang R; Huang L; Lai YC; Grebogi C; Pecora LM Chaos; 2013 Mar; 23(1):013125. PubMed ID: 23556962 [TBL] [Abstract][Full Text] [Related]
13. Quantum chaos in an ultrastrongly coupled bosonic junction. Naether U; García-Ripoll JJ; Mazo JJ; Zueco D Phys Rev Lett; 2014 Feb; 112(7):074101. PubMed ID: 24579602 [TBL] [Abstract][Full Text] [Related]
14. Effect of geometrical rotation on conductance fluctuations in graphene quantum dots. Ying L; Huang L; Lai YC; Zhang Y J Phys Condens Matter; 2013 Mar; 25(10):105802. PubMed ID: 23395833 [TBL] [Abstract][Full Text] [Related]
15. Characterization of random features of chaotic eigenfunctions in unperturbed basis. Wang J; Wang WG Phys Rev E; 2018 Jun; 97(6-1):062219. PubMed ID: 30011441 [TBL] [Abstract][Full Text] [Related]
16. Electrostatic confinement of electrons in an integrable graphene quantum dot. Bardarson JH; Titov M; Brouwer PW Phys Rev Lett; 2009 Jun; 102(22):226803. PubMed ID: 19658887 [TBL] [Abstract][Full Text] [Related]
17. Semiclassical transport in nearly symmetric quantum dots. II. Symmetry breaking due to asymmetric leads. Whitney RS; Schomerus H; Kopp M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056210. PubMed ID: 20365063 [TBL] [Abstract][Full Text] [Related]
18. Open quantum dots: II. Probing the classical to quantum transition. Brunner R; Ferry DK; Akis R; Meisels R; Kuchar F; Burke AM; Bird JP J Phys Condens Matter; 2012 Aug; 24(34):343202. PubMed ID: 22871799 [TBL] [Abstract][Full Text] [Related]
19. Semiclassical theory of chaotic quantum transport. Richter K; Sieber M Phys Rev Lett; 2002 Nov; 89(20):206801. PubMed ID: 12443495 [TBL] [Abstract][Full Text] [Related]