These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 26382477)

  • 1. Dissipative dynamics in a finite chaotic environment: Relationship between damping rate and Lyapunov exponent.
    Xavier JC; Strunz WT; Beims MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022908. PubMed ID: 26382477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy dissipation via coupling with a finite chaotic environment.
    Marchiori MA; de Aguiar MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061112. PubMed ID: 21797307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators.
    Ryabov VB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016214. PubMed ID: 12241468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch.
    Pisarchik AN; Jaimes-Reátegui R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):050901. PubMed ID: 26651632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crossover from classical to quantum behavior of the Duffing oscillator through a pseudo-Lyapunov-exponent.
    Ota Y; Ohba I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):015201. PubMed ID: 15697643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lyapunov instability versus relaxation time in two coupled oscillators.
    Papachristou PK; Mavrommatis E; Constantoudis V; Diakonos FK; Wambach J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016204. PubMed ID: 16486255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos.
    Pazó D; López JM; Politi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum.
    Kengne J; Kenmogne F
    Chaos; 2014 Dec; 24(4):043134. PubMed ID: 25554054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Improved Calculation Formula of the Extended Entropic Chaos Degree and Its Application to Two-Dimensional Chaotic Maps.
    Inoue K
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence.
    Lapeyre G
    Chaos; 2002 Sep; 12(3):688-698. PubMed ID: 12779597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying spatiotemporal chaos in Rayleigh-Bénard convection.
    Karimi A; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046201. PubMed ID: 22680550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering low dimensional macroscopic chaotic dynamics of large finite size complex systems.
    Skardal PS; Restrepo JG; Ott E
    Chaos; 2017 Aug; 27(8):083121. PubMed ID: 28863484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization of mobile chaotic oscillator networks.
    Fujiwara N; Kurths J; Díaz-Guilera A
    Chaos; 2016 Sep; 26(9):094824. PubMed ID: 27781439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the synchronization techniques of chaotic oscillators and their FPGA-based implementation for secure image transmission.
    Guillén-Fernández O; Meléndez-Cano A; Tlelo-Cuautle E; Núñez-Pérez JC; Rangel-Magdaleno JJ
    PLoS One; 2019; 14(2):e0209618. PubMed ID: 30726236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-space Lyapunov exponents and pseudochaos.
    Kocarev L; Szczepanski J
    Phys Rev Lett; 2004 Dec; 93(23):234101. PubMed ID: 15601163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental realization of a multiscroll chaotic oscillator with optimal maximum Lyapunov exponent.
    Tlelo-Cuautle E; Pano-Azucena AD; Carbajal-Gomez VH; Sanchez-Sanchez M
    ScientificWorldJournal; 2014; 2014():303614. PubMed ID: 24883379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of chaos in soft interactions and signatures of nonergodicity.
    Beims MW; Manchein C; Rost JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056203. PubMed ID: 18233735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment.
    Chou CH; Yu T; Hu BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011112. PubMed ID: 18351823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero Lyapunov exponent in the vicinity of the saddle-node bifurcation point in the presence of noise.
    Hramov AE; Koronovskii AA; Kurovskaya MK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036212. PubMed ID: 18851126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lyapunov exponent diagrams of a 4-dimensional Chua system.
    Stegemann C; Albuquerque HA; Rubinger RM; Rech PC
    Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.