These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26382499)

  • 1. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures.
    Dias EO; Lira SA; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023003. PubMed ID: 26382499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azimuthal field instability in a confined ferrofluid.
    Dias EO; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023020. PubMed ID: 25768610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stationary shapes of confined rotating magnetic liquid droplets.
    Lira SA; Miranda JA; Oliveira RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036318. PubMed ID: 21230182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-induced patterns in confined magnetorheological fluids.
    Lira SA; Miranda JA; Oliveira RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046303. PubMed ID: 20481823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.
    Lira SA; Miranda JA
    Phys Rev E; 2016 Jan; 93(1):013129. PubMed ID: 26871176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape instabilities in confined ferrofluids under crossed magnetic fields.
    Oliveira RM; Coutinho ÍM; Anjos PHA; Miranda JA
    Phys Rev E; 2021 Dec; 104(6-2):065113. PubMed ID: 35030845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weakly nonlinear study of normal-field instability in confined ferrofluids.
    Lira SA; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016303. PubMed ID: 21867300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finger competition in lifting Hele-Shaw flows with a yield stress fluid.
    Fontana JV; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023001. PubMed ID: 24032918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field-controlled flow and shape of a magnetorheological fluid annulus.
    Coutinho ÍM; Miranda JA
    Phys Rev E; 2022 Aug; 106(2-2):025105. PubMed ID: 36109920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial elastic fingering in Hele-Shaw cells: a weakly nonlinear study.
    Carvalho GD; Miranda JA; Gadêlha H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053006. PubMed ID: 24329350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of interfacial rheology on fingering instabilities in lifting Hele-Shaw flows.
    Coutinho ÍM; Miranda JA
    Phys Rev E; 2023 Aug; 108(2-2):025104. PubMed ID: 37723719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial pattern formation in confined power-law fluids.
    Brandão R; Fontana JV; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013013. PubMed ID: 25122375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetically induced interfacial instabilities in a ferrofluid annulus.
    Livera POS; Anjos PHA; Miranda JA
    Phys Rev E; 2021 Dec; 104(6-2):065103. PubMed ID: 35030922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized elastica patterns in a curved rotating Hele-Shaw cell.
    Brandão R; Miranda JA
    Phys Rev E; 2017 Aug; 96(2-1):023103. PubMed ID: 28950512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stationary patterns in centrifugally driven interfacial elastic fingering.
    Carvalho GD; Gadêlha H; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063009. PubMed ID: 25615189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling and minimizing fingering instabilities in non-Newtonian fluids.
    Fontana JV; Dias EO; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013016. PubMed ID: 24580329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretch flow of confined non-Newtonian fluids: nonlinear fingering dynamics.
    Brandão R; Fontana JV; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063003. PubMed ID: 24483553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions.
    Oliveira RM; Miranda JA; Leandro ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016304. PubMed ID: 18351931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretching of a confined ferrofluid: influence of viscous stresses and magnetic field.
    Oliveira RM; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036309. PubMed ID: 16605653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of interfacial rheology on fingering patterns in rotating Hele-Shaw cells.
    Coutinho ÍM; Dias EO; Miranda JA
    Phys Rev E; 2023 Feb; 107(2-2):025105. PubMed ID: 36932566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.