These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26382525)

  • 1. Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence.
    Bragg AD; Ireland PJ; Collins LR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023029. PubMed ID: 26382525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sweep-stick mechanism of heavy particle clustering in fluid turbulence.
    Goto S; Vassilicos JC
    Phys Rev Lett; 2008 Feb; 100(5):054503. PubMed ID: 18352376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale dependence of multiplier distributions for particle concentration, enstrophy, and dissipation in the inertial range of homogeneous turbulence.
    Hartlep T; Cuzzi JN; Weston B
    Phys Rev E; 2017 Mar; 95(3-1):033115. PubMed ID: 28415324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tangling clustering of inertial particles in stably stratified turbulence.
    Eidelman A; Elperin T; Kleeorin N; Melnik B; Rogachevskii I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056313. PubMed ID: 20866328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering of charged inertial particles in turbulence.
    Lu J; Nordsiek H; Saw EW; Shaw RA
    Phys Rev Lett; 2010 May; 104(18):184505. PubMed ID: 20482181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial clustering of particles in high-Reynolds-number turbulence.
    Saw EW; Shaw RA; Ayyalasomayajula S; Chuang PY; Gylfason A
    Phys Rev Lett; 2008 May; 100(21):214501. PubMed ID: 18518606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of particle clustering in Gaussian and non-Gaussian synthetic turbulence.
    Nilsen C; Andersson HI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043005. PubMed ID: 25375592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale dependence of the coarse-grained velocity derivative tensor structure in turbulence.
    Naso A; Pumir A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056318. PubMed ID: 16383756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy particle concentration in turbulence at dissipative and inertial scales.
    Bec J; Biferale L; Cencini M; Lanotte A; Musacchio S; Toschi F
    Phys Rev Lett; 2007 Feb; 98(8):084502. PubMed ID: 17359102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative velocity distribution of inertial particles in turbulence: A numerical study.
    Perrin VE; Jonker HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043022. PubMed ID: 26565347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of particle dispersion by sweeping effects in synthetic turbulence.
    Eyink GL; Benveniste D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023011. PubMed ID: 23496614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of particle-fluid density ratio on the dynamics of finite-size particles in homogeneous isotropic turbulent flows.
    Shen J; Lu Z; Wang LP; Peng C
    Phys Rev E; 2021 Aug; 104(2-2):025109. PubMed ID: 34525650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the weak-field regime.
    Blackbourn LA; Tran CV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023012. PubMed ID: 25215825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy Particle Clustering in Inertial Subrange of High-Reynolds Number Turbulence.
    Matsuda K; Yoshimatsu K; Schneider K
    Phys Rev Lett; 2024 Jun; 132(23):234001. PubMed ID: 38905672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling of the two-point velocity difference along scalar gradient trajectories in fluid turbulence.
    Wang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046325. PubMed ID: 19518351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering instability of the spatial distribution of inertial particles in turbulent flows.
    Elperin T; Kleeorin N; L'vov VS; Rogachevskii I; Sokoloff D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036302. PubMed ID: 12366248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-similar clustering of heavy particles in the inertial range of turbulence.
    Ariki T; Yoshida K; Matsuda K; Yoshimatsu K
    Phys Rev E; 2018 Mar; 97(3-1):033109. PubMed ID: 29776089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reynolds number scaling of velocity increments in isotropic turbulence.
    Iyer KP; Sreenivasan KR; Yeung PK
    Phys Rev E; 2017 Feb; 95(2-1):021101. PubMed ID: 28297886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistics of the relative velocity of particles in turbulent flows: Monodisperse particles.
    Bhatnagar A; Gustavsson K; Mitra D
    Phys Rev E; 2018 Feb; 97(2-1):023105. PubMed ID: 29548076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence.
    Ayyalasomayajula S; Gylfason A; Collins LR; Bodenschatz E; Warhaft Z
    Phys Rev Lett; 2006 Oct; 97(14):144507. PubMed ID: 17155261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.