BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 26382643)

  • 1. Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation.
    Reichert R; Zambrzycki C; Jusys Z; Behm RJ
    ChemSusChem; 2015 Nov; 8(21):3677-87. PubMed ID: 26382643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study.
    Wang H; Alden L; Disalvo FJ; Abruña HD
    Phys Chem Chem Phys; 2008 Jul; 10(25):3739-51. PubMed ID: 18563235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation.
    Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J
    J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.
    Zhu T; Chong MN; Chan ES
    ChemSusChem; 2014 Nov; 7(11):2974-97. PubMed ID: 25274424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid.
    Monllor-Satoca D; Borja L; Rodes A; Gómez R; Salvador P
    Chemphyschem; 2006 Dec; 7(12):2540-51. PubMed ID: 17072939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3.
    Wang N; Wang D; Li M; Shi J; Li C
    Nanoscale; 2014 Feb; 6(4):2061-6. PubMed ID: 24384843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of Overcoating Metal Oxides on Photoelectrode for Water Splitting by Automated Screening.
    Saito R; Miseki Y; Nini W; Sayama K
    ACS Comb Sci; 2015 Oct; 17(10):592-9. PubMed ID: 26325162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte.
    Solarska R; Jurczakowski R; Augustynski J
    Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoride-modulated cobalt catalysts for electrochemical oxidation of water under non-alkaline conditions.
    Gerken JB; Landis EC; Hamers RJ; Stahl SS
    ChemSusChem; 2010 Oct; 3(10):1176-9. PubMed ID: 20725926
    [No Abstract]   [Full Text] [Related]  

  • 10. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.
    Klingan K; Ringleb F; Zaharieva I; Heidkamp J; Chernev P; Gonzalez-Flores D; Risch M; Fischer A; Dau H
    ChemSusChem; 2014 May; 7(5):1301-10. PubMed ID: 24449514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator.
    Oliveira HG; Ferreira LH; Bertazzoli R; Longo C
    Water Res; 2015 Apr; 72():305-14. PubMed ID: 25238917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt.
    Neurock M; Janik M; Wieckowski A
    Faraday Discuss; 2008; 140():363-78; discussion 417-37. PubMed ID: 19213327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic Water Oxidation by MnO
    Melder J; Kwong WL; Shevela D; Messinger J; Kurz P
    ChemSusChem; 2017 Nov; 10(22):4491-4502. PubMed ID: 28869720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes.
    Seley D; Ayers K; Parkinson BA
    ACS Comb Sci; 2013 Feb; 15(2):82-9. PubMed ID: 23298465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes.
    Selvaraj V; Grace AN; Alagar M
    J Colloid Interface Sci; 2009 May; 333(1):254-62. PubMed ID: 19243782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol.
    Cheng H; Huang B; Liu Y; Wang Z; Qin X; Zhang X; Dai Y
    Chem Commun (Camb); 2012 Oct; 48(78):9729-31. PubMed ID: 22914674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired oxidation of methane in water catalyzed by N-bridged diiron phthalocyanine complex.
    Sorokin AB; Kudrik EV; Bouchu D
    Chem Commun (Camb); 2008 Jun; (22):2562-4. PubMed ID: 18506244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branched WO3 nanosheet array with layered C3 N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation.
    Hou Y; Zuo F; Dagg AP; Liu J; Feng P
    Adv Mater; 2014 Aug; 26(29):5043-9. PubMed ID: 24848321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response.
    de Tacconi NR; Chenthamarakshan CR; Yogeeswaran G; Watcharenwong A; de Zoysa RS; Basit NA; Rajeshwar K
    J Phys Chem B; 2006 Dec; 110(50):25347-55. PubMed ID: 17165981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.