These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 26382643)
1. Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation. Reichert R; Zambrzycki C; Jusys Z; Behm RJ ChemSusChem; 2015 Nov; 8(21):3677-87. PubMed ID: 26382643 [TBL] [Abstract][Full Text] [Related]
2. Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study. Wang H; Alden L; Disalvo FJ; Abruña HD Phys Chem Chem Phys; 2008 Jul; 10(25):3739-51. PubMed ID: 18563235 [TBL] [Abstract][Full Text] [Related]
3. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636 [TBL] [Abstract][Full Text] [Related]
4. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. Zhu T; Chong MN; Chan ES ChemSusChem; 2014 Nov; 7(11):2974-97. PubMed ID: 25274424 [TBL] [Abstract][Full Text] [Related]
5. Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid. Monllor-Satoca D; Borja L; Rodes A; Gómez R; Salvador P Chemphyschem; 2006 Dec; 7(12):2540-51. PubMed ID: 17072939 [TBL] [Abstract][Full Text] [Related]
6. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. Wang N; Wang D; Li M; Shi J; Li C Nanoscale; 2014 Feb; 6(4):2061-6. PubMed ID: 24384843 [TBL] [Abstract][Full Text] [Related]
7. Discovery of Overcoating Metal Oxides on Photoelectrode for Water Splitting by Automated Screening. Saito R; Miseki Y; Nini W; Sayama K ACS Comb Sci; 2015 Oct; 17(10):592-9. PubMed ID: 26325162 [TBL] [Abstract][Full Text] [Related]
8. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Solarska R; Jurczakowski R; Augustynski J Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176 [TBL] [Abstract][Full Text] [Related]
9. Fluoride-modulated cobalt catalysts for electrochemical oxidation of water under non-alkaline conditions. Gerken JB; Landis EC; Hamers RJ; Stahl SS ChemSusChem; 2010 Oct; 3(10):1176-9. PubMed ID: 20725926 [No Abstract] [Full Text] [Related]
10. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases. Klingan K; Ringleb F; Zaharieva I; Heidkamp J; Chernev P; Gonzalez-Flores D; Risch M; Fischer A; Dau H ChemSusChem; 2014 May; 7(5):1301-10. PubMed ID: 24449514 [TBL] [Abstract][Full Text] [Related]
11. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator. Oliveira HG; Ferreira LH; Bertazzoli R; Longo C Water Res; 2015 Apr; 72():305-14. PubMed ID: 25238917 [TBL] [Abstract][Full Text] [Related]
12. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Neurock M; Janik M; Wieckowski A Faraday Discuss; 2008; 140():363-78; discussion 417-37. PubMed ID: 19213327 [TBL] [Abstract][Full Text] [Related]
13. Electrocatalytic Water Oxidation by MnO Melder J; Kwong WL; Shevela D; Messinger J; Kurz P ChemSusChem; 2017 Nov; 10(22):4491-4502. PubMed ID: 28869720 [TBL] [Abstract][Full Text] [Related]
14. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. Seley D; Ayers K; Parkinson BA ACS Comb Sci; 2013 Feb; 15(2):82-9. PubMed ID: 23298465 [TBL] [Abstract][Full Text] [Related]
15. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes. Selvaraj V; Grace AN; Alagar M J Colloid Interface Sci; 2009 May; 333(1):254-62. PubMed ID: 19243782 [TBL] [Abstract][Full Text] [Related]
16. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Cheng H; Huang B; Liu Y; Wang Z; Qin X; Zhang X; Dai Y Chem Commun (Camb); 2012 Oct; 48(78):9729-31. PubMed ID: 22914674 [TBL] [Abstract][Full Text] [Related]
17. Bio-inspired oxidation of methane in water catalyzed by N-bridged diiron phthalocyanine complex. Sorokin AB; Kudrik EV; Bouchu D Chem Commun (Camb); 2008 Jun; (22):2562-4. PubMed ID: 18506244 [TBL] [Abstract][Full Text] [Related]
18. Branched WO3 nanosheet array with layered C3 N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Hou Y; Zuo F; Dagg AP; Liu J; Feng P Adv Mater; 2014 Aug; 26(29):5043-9. PubMed ID: 24848321 [TBL] [Abstract][Full Text] [Related]
19. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
20. Advancing nanoarchitectures of 2D WO G B; Palanisamy S; T S; A K; Rajakarthihan S; Banat F Environ Res; 2024 Nov; 260():119676. PubMed ID: 39053761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]