These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26382683)

  • 1. Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations: Suggestions toward Improved Ductility.
    An Q; Goddard WA
    Phys Rev Lett; 2015 Sep; 115(10):105501. PubMed ID: 26382683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear-Induced Brittle Failure along Grain Boundaries in Boron Carbide.
    Yang X; Coleman SP; Lasalvia JC; Goddard WA; An Q
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5072-5080. PubMed ID: 29346723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic explanation of shear-induced amorphous band formation in boron carbide.
    An Q; Goddard WA; Cheng T
    Phys Rev Lett; 2014 Aug; 113(9):095501. PubMed ID: 25215991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhardness in nanotwinned boron carbide: a molecular dynamics study.
    Shi L; Zhang H; Ma X; Yang L; Zhong Y; He X
    Phys Chem Chem Phys; 2023 Jul; 25(29):19585-19595. PubMed ID: 37435693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility.
    An Q; Goddard WA
    J Phys Chem Lett; 2014 Dec; 5(23):4169-74. PubMed ID: 26278950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic structure of amorphous shear bands in boron carbide.
    Reddy KM; Liu P; Hirata A; Fujita T; Chen MW
    Nat Commun; 2013; 4():2483. PubMed ID: 24052052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activating Mobile Dislocation in Boron Carbide at Room Temperature via Al Doping.
    Li J; Luo K; An Q
    Phys Rev Lett; 2023 Mar; 130(11):116104. PubMed ID: 37001075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very large scale simulations of materials failure.
    Abraham FF
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):367-82. PubMed ID: 16210185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric twins in boron rich boron carbide.
    Yang X; Goddard WA; An Q
    Phys Chem Chem Phys; 2018 May; 20(19):13340-13347. PubMed ID: 29717734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses.
    Murali P; Guo TF; Zhang YW; Narasimhan R; Li Y; Gao HJ
    Phys Rev Lett; 2011 Nov; 107(21):215501. PubMed ID: 22181893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Athermal brittle-to-ductile transition in amorphous solids.
    Dauchot O; Karmakar S; Procaccia I; Zylberg J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046105. PubMed ID: 22181225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A crossover in the mechanical response of nanocrystalline ceramics.
    Szlufarska I; Nakano A; Vashishta P
    Science; 2005 Aug; 309(5736):911-4. PubMed ID: 16081730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading.
    Taylor DE; McCauley JW; Wright TW
    J Phys Condens Matter; 2012 Dec; 24(50):505402. PubMed ID: 23165091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonadiabatic study of dynamic electronic effects during brittle fracture of silicon.
    Theofanis PL; Jaramillo-Botero A; Goddard WA; Xiao H
    Phys Rev Lett; 2012 Jan; 108(4):045501. PubMed ID: 22400860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation.
    Hasnaoui A; Van Swygenhoven H; Derlet PM
    Science; 2003 Jun; 300(5625):1550-2. PubMed ID: 12791986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amorphous shear bands in crystalline materials as drivers of plasticity.
    Hu X; Liu N; Jambur V; Attarian S; Su R; Zhang H; Xi J; Luo H; Perepezko J; Szlufarska I
    Nat Mater; 2023 Sep; 22(9):1071-1077. PubMed ID: 37400590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brittle-to-ductile transition and theoretical strength in a metal-organic framework glass.
    Yan S; Bennett TD; Feng W; Zhu Z; Yang D; Zhong Z; Qin QH
    Nanoscale; 2023 May; 15(18):8235-8244. PubMed ID: 37071115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brittle-to-Ductile Transition in Metallic Glass Nanowires.
    Şopu D; Foroughi A; Stoica M; Eckert J
    Nano Lett; 2016 Jul; 16(7):4467-71. PubMed ID: 27248329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review on Brittle Fracture Nanomechanics by All-Atom Simulations.
    Patil SP; Heider Y
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31336659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.