These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26382689)

  • 1. Critical Delocalization of Chiral Zero Energy Modes in Graphene.
    Ferreira A; Mucciolo ER
    Phys Rev Lett; 2015 Sep; 115(10):106601. PubMed ID: 26382689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes.
    Cresti A; Ortmann F; Louvet T; Van Tuan D; Roche S
    Phys Rev Lett; 2013 May; 110(19):196601. PubMed ID: 23705730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.
    Ortmann F; Roche S
    Phys Rev Lett; 2013 Feb; 110(8):086602. PubMed ID: 23473182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple quantum phases in graphene with enhanced spin-orbit coupling: from the quantum spin Hall regime to the spin Hall effect and a robust metallic state.
    Cresti A; Van Tuan D; Soriano D; Cummings AW; Roche S
    Phys Rev Lett; 2014 Dec; 113(24):246603. PubMed ID: 25541791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-energy theory of disordered graphene.
    Altland A
    Phys Rev Lett; 2006 Dec; 97(23):236802. PubMed ID: 17280223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge and spin Hall conductivity in metallic graphene.
    Sinitsyn NA; Hill JE; Min H; Sinova J; MacDonald AH
    Phys Rev Lett; 2006 Sep; 97(10):106804. PubMed ID: 17025844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density of states in graphene with vacancies: midgap power law and frozen multifractality.
    Häfner V; Schindler J; Weik N; Mayer T; Balakrishnan S; Narayanan R; Bera S; Evers F
    Phys Rev Lett; 2014 Oct; 113(18):186802. PubMed ID: 25396386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Hall criticality and localization in graphene with short-range impurities at the Dirac point.
    Gattenlöhner S; Hannes WR; Ostrovsky PM; Gornyi IV; Mirlin AD; Titov M
    Phys Rev Lett; 2014 Jan; 112(2):026802. PubMed ID: 24484036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-induced suppression of weak localization in CVD-grown graphene.
    Miao X; Tongay S; Hebard AF
    J Phys Condens Matter; 2012 Nov; 24(47):475304. PubMed ID: 23123808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional graphene with structural defects: elastic mean free path, minimum conductivity, and Anderson transition.
    Lherbier A; Dubois SM; Declerck X; Roche S; Niquet YM; Charlier JC
    Phys Rev Lett; 2011 Jan; 106(4):046803. PubMed ID: 21405346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of interaction symmetry on delocalization and energy transport in one-dimensional disordered lattices.
    Wang J; He D; Zhang Y; Wang J; Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032138. PubMed ID: 26465457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral d-wave superconductivity in doped graphene.
    Black-Schaffer AM; Honerkamp C
    J Phys Condens Matter; 2014 Oct; 26(42):423201. PubMed ID: 25238054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band gap opening by two-dimensional manifestation of peierls instability in graphene.
    Lee SH; Chung HJ; Heo J; Yang H; Shin J; Chung UI; Seo S
    ACS Nano; 2011 Apr; 5(4):2964-9. PubMed ID: 21405129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-coherent transport in graphene quantum billiards.
    Miao F; Wijeratne S; Zhang Y; Coskun UC; Bao W; Lau CN
    Science; 2007 Sep; 317(5844):1530-3. PubMed ID: 17872440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable tight-binding model for graphene.
    Liu MH; Rickhaus P; Makk P; Tóvári E; Maurand R; Tkatschenko F; Weiss M; Schönenberger C; Richter K
    Phys Rev Lett; 2015 Jan; 114(3):036601. PubMed ID: 25659011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Hall conductivity in ordinary and graphene quantum Hall systems.
    Morimoto T; Hatsugai Y; Aoki H
    Phys Rev Lett; 2009 Sep; 103(11):116803. PubMed ID: 19792391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization properties of random-mass Dirac fermions from real-space renormalization group.
    Mkhitaryan VV; Raikh ME
    Phys Rev Lett; 2011 Jun; 106(25):256803. PubMed ID: 21770661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible formation of chiral polarons in graphene.
    Kandemir BS
    J Phys Condens Matter; 2013 Jan; 25(2):025302. PubMed ID: 23196977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.