These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
507 related articles for article (PubMed ID: 26382836)
1. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering. Kirchner M; Schneider S Angew Chem Int Ed Engl; 2015 Nov; 54(46):13508-14. PubMed ID: 26382836 [TBL] [Abstract][Full Text] [Related]
2. CRISPR-Cas9: From a bacterial immune system to genome-edited human cells in clinical trials. Kick L; Kirchner M; Schneider S Bioengineered; 2017 May; 8(3):280-286. PubMed ID: 28287876 [TBL] [Abstract][Full Text] [Related]
6. Diversity of CRISPR-Cas immune systems and molecular machines. Barrangou R Genome Biol; 2015 Nov; 16():247. PubMed ID: 26549499 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9 Immune System as a Tool for Genome Engineering. Hryhorowicz M; Lipiński D; Zeyland J; Słomski R Arch Immunol Ther Exp (Warsz); 2017 Jun; 65(3):233-240. PubMed ID: 27699445 [TBL] [Abstract][Full Text] [Related]
8. RNA-guided CRISPR-Cas technologies for genome-scale investigation of disease processes. Humphrey SE; Kasinski AL J Hematol Oncol; 2015 Apr; 8():31. PubMed ID: 25888285 [TBL] [Abstract][Full Text] [Related]
9. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Wright AV; Nuñez JK; Doudna JA Cell; 2016 Jan; 164(1-2):29-44. PubMed ID: 26771484 [TBL] [Abstract][Full Text] [Related]
10. The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs. Bayat H; Omidi M; Rajabibazl M; Sabri S; Rahimpour A J Microbiol Biotechnol; 2017 Feb; 27(2):207-218. PubMed ID: 27840399 [TBL] [Abstract][Full Text] [Related]
11. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Jiang W; Marraffini LA Annu Rev Microbiol; 2015; 69():209-28. PubMed ID: 26209264 [TBL] [Abstract][Full Text] [Related]
12. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages. Hynes AP; Villion M; Moineau S Nat Commun; 2014 Jul; 5():4399. PubMed ID: 25056268 [TBL] [Abstract][Full Text] [Related]
13. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms. Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067 [TBL] [Abstract][Full Text] [Related]
14. Application of CRISPR/Cas9 genome editing to the study and treatment of disease. Pellagatti A; Dolatshad H; Valletta S; Boultwood J Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103 [TBL] [Abstract][Full Text] [Related]
15. Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems. Liu KI; Ramli MNB; Sutrisnoh NB; Tan MH Methods Mol Biol; 2018; 1772():267-288. PubMed ID: 29754234 [TBL] [Abstract][Full Text] [Related]
16. Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria. Grenier F; Lucier JF; Rodrigue S Methods Mol Biol; 2015; 1334():233-44. PubMed ID: 26404154 [TBL] [Abstract][Full Text] [Related]
17. Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: A comprehensive overview. Araldi RP; Khalil C; Grignet PH; Teixeira MR; de Melo TC; Módolo DG; Fernandes LGV; Ruiz J; de Souza EB Gene; 2020 Jun; 745():144636. PubMed ID: 32244056 [TBL] [Abstract][Full Text] [Related]
18. [From the bacterial CRISPR locus, an adaptative immune system equivalent, to a universal editing tool]. Friot A; Dekeyzer B; Guingand A; Guguin J; Joly A; Vuillier S Med Sci (Paris); 2018 May; 34(5):395-396. PubMed ID: 29900837 [No Abstract] [Full Text] [Related]
19. The CRISPR-Cas system for plant genome editing: advances and opportunities. Kumar V; Jain M J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501 [TBL] [Abstract][Full Text] [Related]