These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26383018)

  • 1. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.
    Kaplan J; Grinstaff M
    J Vis Exp; 2015 Aug; (102):e53117. PubMed ID: 26383018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imparting superhydrophobicity to biodegradable poly(lactide-co-glycolide) electrospun meshes.
    Kaplan JA; Lei H; Liu R; Padera R; Colson YL; Grinstaff MW
    Biomacromolecules; 2014 Jul; 15(7):2548-54. PubMed ID: 24901038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering.
    Lins LC; Wianny F; Livi S; Hidalgo IA; Dehay C; Duchet-Rumeau J; Gérard JF
    Biomacromolecules; 2016 Oct; 17(10):3172-3187. PubMed ID: 27629596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetable-oil-based polymers as future polymeric biomaterials.
    Miao S; Wang P; Su Z; Zhang S
    Acta Biomater; 2014 Apr; 10(4):1692-704. PubMed ID: 24012607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods.
    Shi J; Alves NM; Mano JF
    Bioinspir Biomim; 2008 Sep; 3(3):034003. PubMed ID: 18626131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired electrospun micro/nanofibers with special wettability.
    Baji A; Abtahi M; Ramakrishna S
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4781-98. PubMed ID: 24757946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-/nanometer rough structure of a superhydrophobic biodegradable coating by electrospraying for initial anti-bioadhesion.
    Hu C; Liu S; Li B; Yang H; Fan C; Cui W
    Adv Healthc Mater; 2013 Oct; 2(10):1314-21. PubMed ID: 23554405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds.
    Moroishi H; Yoshida C; Murakami Y
    Colloids Surf B Biointerfaces; 2013 Feb; 102():597-603. PubMed ID: 23107939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity.
    Rudolph A; Teske M; Illner S; Kiefel V; Sternberg K; Grabow N; Wree A; Hovakimyan M
    PLoS One; 2015; 10(12):e0142075. PubMed ID: 26641662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polymer coatings on Ti6Al7Nb alloy.
    Szewczenko J; Kajzer W; Kajzer A; Basiaga M; Kaczmarek M; Antonowicz M; Nowińska K; Jaworska J; Jelonek K; Kasperczyk J
    Acta Bioeng Biomech; 2019; 21(4):83-92. PubMed ID: 32022799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films.
    Belibel R; Avramoglou T; Garcia A; Barbaud C; Mora L
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():998-1006. PubMed ID: 26652458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable polymers for electrospinning: towards biomedical applications.
    Kai D; Liow SS; Loh XJ
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():659-70. PubMed ID: 25491875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on poly(L-lactide-co-trimethylene carbonate): synthesis and cell compatibility of electrospun film.
    Ji LJ; Lai KL; He B; Wang G; Song LQ; Wu Y; Gu ZW
    Biomed Mater; 2010 Aug; 5(4):045009. PubMed ID: 20644241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of aliphatic polyesters on activation of the immune system: studies on macrophages.
    Scislowska-Czarnecka A; Pamula E; Tlalka A; Kolaczkowska E
    J Biomater Sci Polym Ed; 2012; 23(6):715-38. PubMed ID: 21375810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the wettability and adhesion of nanostructured poly-(p-xylylene) films.
    Boduroglu S; Cetinkaya M; Dressick WJ; Singh A; Demirel MC
    Langmuir; 2007 Nov; 23(23):11391-5. PubMed ID: 17929851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and effective method for making multipotent/multilineage scaffolds with hydrophilic nature without any postmodification/treatment.
    Vaikkath D; Anitha R; Sumathy B; Nair PD
    Colloids Surf B Biointerfaces; 2016 May; 141():112-119. PubMed ID: 26848946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of core-shell type biodegradable polymeric micelles from amphiphilic poly(aspartic acid)-block-polylactide diblock copolymer.
    Arimura H; Ohya Y; Ouchi T
    Biomacromolecules; 2005; 6(2):720-5. PubMed ID: 15762635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.