These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 26383098)
1. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus. Cao H; Ke T; Liu R; Yu J; Dong C; Cheng M; Huang J; Liu S PLoS One; 2015; 10(9):e0137414. PubMed ID: 26383098 [TBL] [Abstract][Full Text] [Related]
2. EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus. Ke T; Cao H; Huang J; Hu F; Huang J; Dong C; Ma X; Yu J; Mao H; Wang X; Niu Q; Hui F; Liu S BMC Genomics; 2015 Sep; 16(1):653. PubMed ID: 26330304 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
4. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. Rietz S; Bernsdorff FE; Cai D J Exp Bot; 2012 Sep; 63(15):5507-19. PubMed ID: 22888126 [TBL] [Abstract][Full Text] [Related]
5. The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Silva NF; Goring DR Plant Mol Biol; 2002 Nov; 50(4-5):667-85. PubMed ID: 12374299 [TBL] [Abstract][Full Text] [Related]
6. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Joshi RK; Megha S; Rahman MH; Basu U; Kav NN Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030 [TBL] [Abstract][Full Text] [Related]
7. [Cloning and bioinformatic analyzing of transcription factor AP2/ERF-B3 subfamily genes from Brassica napus L. Huyou 15]. Zhuang J; Zhou XR; Sun CC; Guan BC; Peng RH; Qiao YS; Zhang Z; Xiong AS; Yao QH Fen Zi Xi Bao Sheng Wu Xue Bao; 2008 Jun; 41(3):192-206. PubMed ID: 18630598 [TBL] [Abstract][Full Text] [Related]
8. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Wu T; Tang D; Chen W; Huang H; Wang R; Chen Y Gene; 2013 Sep; 527(1):235-42. PubMed ID: 23820081 [TBL] [Abstract][Full Text] [Related]
9. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Cao JY; Xu YP; Cai XZ J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum. Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767 [TBL] [Abstract][Full Text] [Related]
11. Novel properties of antimicrobial peptide anoplin. Jindřichová B; Burketová L; Novotná Z Biochem Biophys Res Commun; 2014 Feb; 444(4):520-4. PubMed ID: 24472551 [TBL] [Abstract][Full Text] [Related]
12. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea. Zhang Y; Huai D; Yang Q; Cheng Y; Ma M; Kliebenstein DJ; Zhou Y PLoS One; 2015; 10(10):e0140491. PubMed ID: 26465156 [TBL] [Abstract][Full Text] [Related]
14. A maritime pine antimicrobial peptide involved in ammonium nutrition. Canales J; Avila C; Cánovas FM Plant Cell Environ; 2011 Sep; 34(9):1443-53. PubMed ID: 21535015 [TBL] [Abstract][Full Text] [Related]
15. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. Liang Y; Srivastava S; Rahman MH; Strelkov SE; Kav NN J Agric Food Chem; 2008 Mar; 56(6):1963-76. PubMed ID: 18290614 [TBL] [Abstract][Full Text] [Related]
16. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. Wang Z; Zhao FY; Tang MQ; Chen T; Bao LL; Cao J; Li YL; Yang YH; Zhu KM; Liu S; Tan XL Plant Sci; 2020 Feb; 291():110362. PubMed ID: 31928657 [TBL] [Abstract][Full Text] [Related]
17. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Ziaei M; Motallebi M; Zamani MR; Panjeh NZ Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090 [TBL] [Abstract][Full Text] [Related]
18. Canola (Brassica napus L.) NAC103 transcription factor gene is a novel player inducing reactive oxygen species accumulation and cell death in plants. Niu F; Wang B; Wu F; Yan J; Li L; Wang C; Wang Y; Yang B; Jiang YQ Biochem Biophys Res Commun; 2014 Nov; 454(1):30-5. PubMed ID: 25450358 [TBL] [Abstract][Full Text] [Related]
19. Mechanism study on a new antimicrobial peptide Sphistin derived from the N-terminus of crab histone H2A identified in haemolymphs of Scylla paramamosain. Chen B; Fan DQ; Zhu KX; Shan ZG; Chen FY; Hou L; Cai L; Wang KJ Fish Shellfish Immunol; 2015 Dec; 47(2):833-46. PubMed ID: 26475366 [TBL] [Abstract][Full Text] [Related]
20. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Verma SS; Yajima WR; Rahman MH; Shah S; Liu JJ; Ekramoddoullah AK; Kav NN Plant Mol Biol; 2012 May; 79(1-2):61-74. PubMed ID: 22351159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]