These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 26383264)
1. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Choppala G; Bolan N; Kunhikrishnan A; Bush R Chemosphere; 2016 Feb; 144():374-81. PubMed ID: 26383264 [TBL] [Abstract][Full Text] [Related]
2. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of chromate reduction in soils by surface modified biochar. Mandal S; Sarkar B; Bolan N; Ok YS; Naidu R J Environ Manage; 2017 Jan; 186(Pt 2):277-284. PubMed ID: 27229360 [TBL] [Abstract][Full Text] [Related]
4. Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As(V) and Cr(VI) in contaminated soils. Kunhikrishnan A; Choppala G; Seshadri B; Wijesekara H; Bolan NS; Mbene K; Kim WI J Environ Manage; 2017 Jan; 186(Pt 2):183-191. PubMed ID: 27530073 [TBL] [Abstract][Full Text] [Related]
5. Biochar-driven reduction of As(V) and Cr(VI): Effects of pyrolysis temperature and low-molecular-weight organic acids. Qin J; Li Q; Liu Y; Niu A; Lin C Ecotoxicol Environ Saf; 2020 Sep; 201():110873. PubMed ID: 32544750 [TBL] [Abstract][Full Text] [Related]
6. Chemodynamics of chromium reduction in soils: implications to bioavailability. Choppala G; Bolan N; Seshadri B J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115 [TBL] [Abstract][Full Text] [Related]
8. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. McLean J; Beveridge TJ Appl Environ Microbiol; 2001 Mar; 67(3):1076-84. PubMed ID: 11229894 [TBL] [Abstract][Full Text] [Related]
9. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J Ecotoxicol Environ Saf; 2021 Jan; 208():111506. PubMed ID: 33120269 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic evaluation of biochar potential for plant growth promotion and alleviation of chromium-induced phytotoxicity in Ficus elastica. Kumar A; Joseph S; Tsechansky L; Schreiter IJ; Schüth C; Taherysoosavi S; Mitchell DRG; Graber ER Chemosphere; 2020 Mar; 243():125332. PubMed ID: 31751928 [TBL] [Abstract][Full Text] [Related]
11. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application. Choudhary B; Paul D; Singh A; Gupta T Environ Sci Pollut Res Int; 2017 Jul; 24(20):16786-16797. PubMed ID: 28567678 [TBL] [Abstract][Full Text] [Related]
12. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China. Zhao X; Dong D; Hua X; Dong S J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903 [TBL] [Abstract][Full Text] [Related]
14. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Choppala G; Bolan N; Kunhikrishnan A; Skinner W; Seshadri B Environ Sci Pollut Res Int; 2015 Jun; 22(12):8969-78. PubMed ID: 23539209 [TBL] [Abstract][Full Text] [Related]
15. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Xu Y; Seshadri B; Sarkar B; Wang H; Rumpel C; Sparks D; Farrell M; Hall T; Yang X; Bolan N Sci Total Environ; 2018 Apr; 621():148-159. PubMed ID: 29179070 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar. Fang S; Tsang DC; Zhou F; Zhang W; Qiu R Chemosphere; 2016 Apr; 149():263-71. PubMed ID: 26866964 [TBL] [Abstract][Full Text] [Related]
17. Responses of microbial community composition and function to biochar and irrigation management and the linkage to Cr transformation in paddy soil. Xiao W; Ye X; Ye Z; Zhang Q; Zhao S; Chen D; Gao N; Huang M Environ Pollut; 2022 Jul; 304():119232. PubMed ID: 35364188 [TBL] [Abstract][Full Text] [Related]
18. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Qiao JT; Li XM; Li FB J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of bacterial biosensors to determine chromate bioavailability and to assess ecotoxicity of soils. Coelho C; Branco R; Natal-da-Luz T; Sousa JP; Morais PV Chemosphere; 2015 Jun; 128():62-9. PubMed ID: 25655820 [TBL] [Abstract][Full Text] [Related]
20. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Xia S; Song Z; Jeyakumar P; Bolan N; Wang H Environ Geochem Health; 2020 Jun; 42(6):1543-1567. PubMed ID: 31673917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]