These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26383604)

  • 1. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay.
    Ma R; Skelton JJ; Riechers DE
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26383604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Pathways for S-Metolachlor Detoxification Differ Between Tolerant Corn and Multiple-Resistant Waterhemp.
    Strom SA; Hager AG; Concepcion JCT; Seiter NJ; Davis AS; Morris JA; Kaundun SS; Riechers DE
    Plant Cell Physiol; 2021 Dec; 62(11):1770-1785. PubMed ID: 34453831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of 2,4-dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (Amaranthus tuberculatus) population.
    Figueiredo MR; Leibhart LJ; Reicher ZJ; Tranel PJ; Nissen SJ; Westra P; Bernards ML; Kruger GR; Gaines TA; Jugulam M
    Pest Manag Sci; 2018 Oct; 74(10):2356-2362. PubMed ID: 29194949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid metabolism increases the level of 2,4-D resistance at high temperature in common waterhemp (Amaranthus tuberculatus).
    Shyam C; Jhala AJ; Kruger G; Jugulam M
    Sci Rep; 2019 Nov; 9(1):16695. PubMed ID: 31723191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide.
    Salas-Perez RA; Saski CA; Noorai RE; Srivastava SK; Lawton-Rauh AL; Nichols RL; Roma-Burgos N
    PLoS One; 2018; 13(4):e0195488. PubMed ID: 29672568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Herbicide resistance in Amaranthus tuberculatus
    Tranel PJ
    Pest Manag Sci; 2021 Jan; 77(1):43-54. PubMed ID: 32815250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp.
    Ma R; Kaundun SS; Tranel PJ; Riggins CW; McGinness DL; Hager AG; Hawkes T; McIndoe E; Riechers DE
    Plant Physiol; 2013 Sep; 163(1):363-77. PubMed ID: 23872617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tembotrione detoxification in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor-resistant Palmer amaranth (Amaranthus palmeri S. Wats.).
    Küpper A; Peter F; Zöllner P; Lorentz L; Tranel PJ; Beffa R; Gaines TA
    Pest Manag Sci; 2018 Oct; 74(10):2325-2334. PubMed ID: 29105299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of resistance to mesotrione in an Amaranthus tuberculatus population from Nebraska, USA.
    Kaundun SS; Hutchings SJ; Dale RP; Howell A; Morris JA; Kramer VC; Shivrain VK; Mcindoe E
    PLoS One; 2017; 12(6):e0180095. PubMed ID: 28662111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Pathway of Topramezone in Multiple-Resistant Waterhemp (
    Lygin AV; Kaundun SS; Morris JA; Mcindoe E; Hamilton AR; Riechers DE
    Front Plant Sci; 2018; 9():1644. PubMed ID: 30519248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating target-site resistance mechanism to the PPO-inhibiting herbicide fomesafen in waterhemp and interspecific hybridization of Amaranthus species using next generation sequencing.
    Nie H; Mansfield BC; Harre NT; Young JM; Steppig NR; Young BG
    Pest Manag Sci; 2019 Dec; 75(12):3235-3244. PubMed ID: 30983048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using RNA-seq to characterize responses to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide resistance in waterhemp (Amaranthus tuberculatus).
    Kohlhase DR; O'Rourke JA; Owen MDK; Graham MA
    BMC Plant Biol; 2019 May; 19(1):182. PubMed ID: 31060501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Managing the evolution of herbicide resistance.
    Evans JA; Tranel PJ; Hager AG; Schutte B; Wu C; Chatham LA; Davis AS
    Pest Manag Sci; 2016 Jan; 72(1):74-80. PubMed ID: 25809409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Herbicide resistances in Amaranthus tuberculatus: a call for new options.
    Tranel PJ; Riggins CW; Bell MS; Hager AG
    J Agric Food Chem; 2011 Jun; 59(11):5808-12. PubMed ID: 21073196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global perspective of herbicide-resistant weeds.
    Heap I
    Pest Manag Sci; 2014 Sep; 70(9):1306-15. PubMed ID: 24302673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of glyphosate resistance in Amaranthus tuberculatus populations.
    Lorentz L; Gaines TA; Nissen SJ; Westra P; Strek HJ; Dehne HW; Ruiz-Santaella JP; Beffa R
    J Agric Food Chem; 2014 Aug; 62(32):8134-42. PubMed ID: 24956036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance to a nonselective 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide via novel reduction-dehydration-glutathione conjugation in Amaranthus tuberculatus.
    Concepcion JCT; Kaundun SS; Morris JA; Hutchings SJ; Strom SA; Lygin AV; Riechers DE
    New Phytol; 2021 Dec; 232(5):2089-2105. PubMed ID: 34480751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification.
    Matzrafi M; Seiwert B; Reemtsma T; Rubin B; Peleg Z
    Planta; 2016 Dec; 244(6):1217-1227. PubMed ID: 27507240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact.
    Bonny S
    Environ Manage; 2016 Jan; 57(1):31-48. PubMed ID: 26296738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides.
    Caverzan A; Piasecki C; Chavarria G; Stewart CN; Vargas L
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.