BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26383635)

  • 1. Optogenetic Control of Gene Expression in Drosophila.
    Chan YB; Alekseyenko OV; Kravitz EA
    PLoS One; 2015; 10(9):e0138181. PubMed ID: 26383635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light.
    Agrawal P; Houl JH; Gunawardhana KL; Liu T; Zhou J; Zoran MJ; Hardin PE
    Curr Biol; 2017 Aug; 27(16):2431-2441.e3. PubMed ID: 28781048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae.
    Marley R; Giachello CN; Scrutton NS; Baines RA; Jones AR
    Sci Rep; 2014 Jul; 4():5799. PubMed ID: 25052424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and robust optogenetic control of gene expression in Drosophila.
    di Pietro F; Herszterg S; Huang A; Bosveld F; Alexandre C; Sancéré L; Pelletier S; Joudat A; Kapoor V; Vincent JP; Bellaïche Y
    Dev Cell; 2021 Dec; 56(24):3393-3404.e7. PubMed ID: 34879263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster.
    Lee G; Kim KM; Kikuno K; Wang Z; Choi YJ; Park JH
    Cell Tissue Res; 2008 Mar; 331(3):659-73. PubMed ID: 18087727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performing Chromophore-Assisted Laser Inactivation in Drosophila Embryos Using GFP.
    Pélissier-Monier A; Sanson B; Monier B
    Methods Mol Biol; 2016; 1478():161-176. PubMed ID: 27730580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila.
    Yoshii T; Hermann-Luibl C; Kistenpfennig C; Schmid B; Tomioka K; Helfrich-Förster C
    J Neurosci; 2015 Apr; 35(15):6131-41. PubMed ID: 25878285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism.
    Gegear RJ; Foley LE; Casselman A; Reppert SM
    Nature; 2010 Feb; 463(7282):804-7. PubMed ID: 20098414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal expression patterns of timeless in vg and cry(b) mutants of Drosophila melanogaster.
    Suthakar G; Subramanian P; Manivasagam T
    Indian J Biochem Biophys; 2005 Apr; 42(2):87-91. PubMed ID: 23923567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo.
    Bach EA; Ekas LA; Ayala-Camargo A; Flaherty MS; Lee H; Perrimon N; Baeg GH
    Gene Expr Patterns; 2007 Jan; 7(3):323-31. PubMed ID: 17008134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature.
    Yoshii T; Hermann C; Helfrich-Förster C
    J Biol Rhythms; 2010 Dec; 25(6):387-98. PubMed ID: 21135155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2.
    Pathak GP; Spiltoir JI; Höglund C; Polstein LR; Heine-Koskinen S; Gersbach CA; Rossi J; Tucker CL
    Nucleic Acids Res; 2017 Nov; 45(20):e167. PubMed ID: 28431041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FLPing Genes On and Off in Drosophila.
    Weasner BM; Zhu J; Kumar JP
    Methods Mol Biol; 2017; 1642():195-209. PubMed ID: 28815502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Rescue of a Patterning Mutant.
    Johnson HE; Djabrayan NJV; Shvartsman SY; Toettcher JE
    Curr Biol; 2020 Sep; 30(17):3414-3424.e3. PubMed ID: 32707057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Control of the Tet Gene Expression System in Mammalian Cells.
    Yamada M; Suzuki Y; Nagasaki SC; Okuno H; Imayoshi I
    Cell Rep; 2018 Oct; 25(2):487-500.e6. PubMed ID: 30304687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light.
    Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K
    J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction and immunoblotting of proteins from embryos.
    Wodarz A
    Methods Mol Biol; 2008; 420():335-45. PubMed ID: 18641958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.