These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 26383702)

  • 1. Neural development: lipid guideposts.
    Yates D
    Nat Rev Neurosci; 2015 Oct; 16(10):578. PubMed ID: 26383702
    [No Abstract]   [Full Text] [Related]  

  • 2. NEURONAL DEVELOPMENT. Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord.
    Guy AT; Nagatsuka Y; Ooashi N; Inoue M; Nakata A; Greimel P; Inoue A; Nabetani T; Murayama A; Ohta K; Ito Y; Aoki J; Hirabayashi Y; Kamiguchi H
    Science; 2015 Aug; 349(6251):974-7. PubMed ID: 26315437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro reconstruction of neuro-epidermal connections.
    Château Y; Dorange G; Clément JF; Pennec JP; Gobin E; Griscom L; Baudrimont M; Rougier N; Chesné C; Misery L
    J Invest Dermatol; 2007 Apr; 127(4):979-81. PubMed ID: 17159914
    [No Abstract]   [Full Text] [Related]  

  • 4. Dorsally derived netrin 1 provides an inhibitory cue and elaborates the 'waiting period' for primary sensory axons in the developing spinal cord.
    Watanabe K; Tamamaki N; Furuta T; Ackerman SL; Ikenaka K; Ono K
    Development; 2006 Apr; 133(7):1379-87. PubMed ID: 16510500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents.
    Traub RJ; Allen B; Humphrey E; Ruda MA
    J Comp Neurol; 1990 Dec; 302(3):562-74. PubMed ID: 1702117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The cannabinoid system and pain: towards new drugs?].
    Beltramo M
    J Soc Biol; 2009; 203(1):99-106. PubMed ID: 19358815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants.
    Ramón-Cueto A; Nieto-Sampedro M
    Exp Neurol; 1994 Jun; 127(2):232-44. PubMed ID: 8033963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that axons are mitogenic for oligodendrocytes isolated from adult animals.
    Wood PM; Bunge RP
    Nature; 1986 Apr 24-30; 320(6064):756-8. PubMed ID: 3703003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR
    J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous radial glial cells support regenerating axons after spinal cord transection.
    Nomura H; Kim H; Mothe A; Zahir T; Kulbatski I; Morshead CM; Shoichet MS; Tator CH
    Neuroreport; 2010 Sep; 21(13):871-6. PubMed ID: 20671580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural progenitors restore connectivity across an injured spinal cord.
    Singh H; Wang MY
    World Neurosurg; 2011; 76(1-2):10-2. PubMed ID: 21839930
    [No Abstract]   [Full Text] [Related]  

  • 12. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia.
    LoPachin RM; Gaughan CL; Lehning EJ; Kaneko Y; Kelly TM; Blight A
    J Neurophysiol; 1999 Nov; 82(5):2143-53. PubMed ID: 10561394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3.
    Comer JD; Pan FC; Willet SG; Haldipur P; Millen KJ; Wright CV; Kaltschmidt JA
    Front Neural Circuits; 2015; 9():36. PubMed ID: 26257608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of dorsal root axon regeneration into transplants of fetal spinal cord: I. A light microscopic study.
    Itoh Y; Sugawara T; Kowada M; Tessler A
    J Comp Neurol; 1992 Sep; 323(2):198-208. PubMed ID: 1401256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The role of glia in the spinal cord in pathological pain].
    Zhong DX; Ji N; Wang YY
    Sheng Li Ke Xue Jin Zhan; 2003 Oct; 34(4):353-5. PubMed ID: 14992022
    [No Abstract]   [Full Text] [Related]  

  • 16. [Formation of intricate synaptic complexes in cultures of dissociated spinal cord and spinal ganglia cells].
    Skibo GG; Viktorov IV; Koval' LM
    Dokl Akad Nauk SSSR; 1984; 276(3):729-31. PubMed ID: 6468266
    [No Abstract]   [Full Text] [Related]  

  • 17. [Study of the distribution of surface membrane glycoconjugates in spinal cord and spinal ganglia neurons cultured in a monolayer].
    Koval' LM; Skibo GG; Lutsik MD
    Dokl Akad Nauk SSSR; 1988; 303(2):481-3. PubMed ID: 3250832
    [No Abstract]   [Full Text] [Related]  

  • 18. SEMA3A regulates developing sensory projections in the chicken spinal cord.
    Fu SY; Sharma K; Luo Y; Raper JA; Frank E
    J Neurobiol; 2000 Dec; 45(4):227-36. PubMed ID: 11077427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glial repair at the lesion site in regenerating goldfish spinal cord: an immunohistochemical study using species-specific antibodies.
    Nona SN; Stafford CA
    J Neurosci Res; 1995 Oct; 42(3):350-6. PubMed ID: 8583503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in cell number in the central canal ependyma and in the dorsal grey matter of the rabbit thoracic spinal cord during fetal development.
    Sturrock RR
    J Anat; 1982 Oct; 135(Pt 3):635-47. PubMed ID: 7153178
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.