These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 26383706)
61. A Trypanosoma cruzi heat shock protein 40 is able to stimulate the adenosine triphosphate hydrolysis activity of heat shock protein 70 and can substitute for a yeast heat shock protein 40. Edkins AL; Ludewig MH; Blatch GL Int J Biochem Cell Biol; 2004 Aug; 36(8):1585-98. PubMed ID: 15147737 [TBL] [Abstract][Full Text] [Related]
62. Allostery in Hsp70 chaperones is transduced by subdomain rotations. Bhattacharya A; Kurochkin AV; Yip GN; Zhang Y; Bertelsen EB; Zuiderweg ER J Mol Biol; 2009 May; 388(3):475-90. PubMed ID: 19361428 [TBL] [Abstract][Full Text] [Related]
63. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Brehmer D; Rüdiger S; Gässler CS; Klostermeier D; Packschies L; Reinstein J; Mayer MP; Bukau B Nat Struct Biol; 2001 May; 8(5):427-32. PubMed ID: 11323718 [TBL] [Abstract][Full Text] [Related]
64. Switches, catapults, and chaperones: steady-state kinetic analysis of Hsp70-substrate interactions. Chesnokova LS; Witt SN Biochemistry; 2005 Aug; 44(33):11224-33. PubMed ID: 16101306 [TBL] [Abstract][Full Text] [Related]
65. Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance. Lai AL; Clerico EM; Blackburn ME; Patel NA; Robinson CV; Borbat PP; Freed JH; Gierasch LM J Biol Chem; 2017 May; 292(21):8773-8785. PubMed ID: 28428246 [TBL] [Abstract][Full Text] [Related]
66. M domains couple the ClpB threading motor with the DnaK chaperone activity. Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532 [TBL] [Abstract][Full Text] [Related]
67. Structural basis of J cochaperone binding and regulation of Hsp70. Jiang J; Maes EG; Taylor AB; Wang L; Hinck AP; Lafer EM; Sousa R Mol Cell; 2007 Nov; 28(3):422-33. PubMed ID: 17996706 [TBL] [Abstract][Full Text] [Related]
68. Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain. Shonhai A; Boshoff A; Blatch GL Mol Genet Genomics; 2005 Aug; 274(1):70-8. PubMed ID: 15973516 [TBL] [Abstract][Full Text] [Related]
69. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. Buchberger A; Theyssen H; Schröder H; McCarty JS; Virgallita G; Milkereit P; Reinstein J; Bukau B J Biol Chem; 1995 Jul; 270(28):16903-10. PubMed ID: 7622507 [TBL] [Abstract][Full Text] [Related]
70. The four hydrophobic residues on the Hsp70 inter-domain linker have two distinct roles. Kumar DP; Vorvis C; Sarbeng EB; Cabra Ledesma VC; Willis JE; Liu Q J Mol Biol; 2011 Sep; 411(5):1099-113. PubMed ID: 21762702 [TBL] [Abstract][Full Text] [Related]
71. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB. Nagy M; Wu HC; Liu Z; Kedzierska-Mieszkowska S; Zolkiewski M Protein Sci; 2009 Feb; 18(2):287-93. PubMed ID: 19177562 [TBL] [Abstract][Full Text] [Related]
72. A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy. Bauer D; Meinhold S; Jakob RP; Stigler J; Merkel U; Maier T; Rief M; Žoldák G Proc Natl Acad Sci U S A; 2018 May; 115(18):4666-4671. PubMed ID: 29669923 [TBL] [Abstract][Full Text] [Related]
73. Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens. Ghazaei C J Med Microbiol; 2017 Mar; 66(3):259-265. PubMed ID: 28086078 [TBL] [Abstract][Full Text] [Related]
74. Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK. Ung PM; Thompson AD; Chang L; Gestwicki JE; Carlson HA PLoS Comput Biol; 2013; 9(11):e1003279. PubMed ID: 24277995 [TBL] [Abstract][Full Text] [Related]
75. Hsp70 chaperones: cellular functions and molecular mechanism. Mayer MP; Bukau B Cell Mol Life Sci; 2005 Mar; 62(6):670-84. PubMed ID: 15770419 [TBL] [Abstract][Full Text] [Related]
76. Selective promiscuity in the binding of Clerico EM; Pozhidaeva AK; Jansen RM; Özden C; Tilitsky JM; Gierasch LM Proc Natl Acad Sci U S A; 2021 Oct; 118(41):. PubMed ID: 34625496 [TBL] [Abstract][Full Text] [Related]
77. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Liu Q; Hendrickson WA Cell; 2007 Oct; 131(1):106-20. PubMed ID: 17923091 [TBL] [Abstract][Full Text] [Related]
78. Structural Communication between the Grindle MP; Carter B; Alao JP; Connors K; Tehver R; Kravats AN Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672263 [TBL] [Abstract][Full Text] [Related]
79. Basic mechanism of the autonomous ClpG disaggregase. Katikaridis P; Römling U; Mogk A J Biol Chem; 2021; 296():100460. PubMed ID: 33639171 [TBL] [Abstract][Full Text] [Related]
80. Substrate Binding Switches the Conformation at the Lynchpin Site in the Substrate-Binding Domain of Human Hsp70 to Enable Allosteric Interdomain Communication. Umehara K; Hoshikawa M; Tochio N; Tate SI Molecules; 2018 Feb; 23(3):. PubMed ID: 29495458 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]