These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26383818)
1. Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. Sobhani A; Manjavacas A; Cao Y; McClain MJ; García de Abajo FJ; Nordlander P; Halas NJ Nano Lett; 2015 Oct; 15(10):6946-51. PubMed ID: 26383818 [TBL] [Abstract][Full Text] [Related]
2. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement. Li GC; Zhang YL; Jiang J; Luo Y; Lei DY ACS Nano; 2017 Mar; 11(3):3067-3080. PubMed ID: 28291332 [TBL] [Abstract][Full Text] [Related]
3. Linewidth narrowing of aluminum breathing plasmon resonances in Bragg grating decorated nanodisks. Zhao X; Du C; Leng R; Li L; Luo W; Wu W; Xiang Y; Ren M; Zhang X; Cai W; Xu J Nanoscale Adv; 2021 Jul; 3(14):4286-4291. PubMed ID: 36132839 [TBL] [Abstract][Full Text] [Related]
4. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures. Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061 [TBL] [Abstract][Full Text] [Related]
5. Programmable and reversible plasmon mode engineering. Yang A; Hryn AJ; Bourgeois MR; Lee WK; Hu J; Schatz GC; Odom TW Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14201-14206. PubMed ID: 27911819 [TBL] [Abstract][Full Text] [Related]
6. Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. Gerislioglu B; Dong L; Ahmadivand A; Hu H; Nordlander P; Halas NJ Nano Lett; 2020 Mar; 20(3):2087-2093. PubMed ID: 31990568 [TBL] [Abstract][Full Text] [Related]
7. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics. Liu HW; Lin FC; Lin SW; Wu JY; Chou BT; Lai KJ; Lin SD; Huang JS ACS Nano; 2015 Apr; 9(4):3875-86. PubMed ID: 25848830 [TBL] [Abstract][Full Text] [Related]
8. Localized and propagating plasmons in metal films with nanoholes. Schwind M; Kasemo B; Zorić I Nano Lett; 2013 Apr; 13(4):1743-50. PubMed ID: 23484456 [TBL] [Abstract][Full Text] [Related]
9. Aluminum for plasmonics. Knight MW; King NS; Liu L; Everitt HO; Nordlander P; Halas NJ ACS Nano; 2014 Jan; 8(1):834-40. PubMed ID: 24274662 [TBL] [Abstract][Full Text] [Related]
10. Low-loss aluminum epitaxial film for scalable and sustainable plasmonics: direct comparison with silver epitaxial film. Raja SS; Cheng CW; Gwo S Nanoscale; 2020 Dec; 12(46):23809-23816. PubMed ID: 33237103 [TBL] [Abstract][Full Text] [Related]
17. Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays. Maidecchi G; Gonella G; Proietti Zaccaria R; Moroni R; Anghinolfi L; Giglia A; Nannarone S; Mattera L; Dai HL; Canepa M; Bisio F ACS Nano; 2013 Jul; 7(7):5834-41. PubMed ID: 23725571 [TBL] [Abstract][Full Text] [Related]
18. Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film. Farhang A; Bigler N; Martin OJ Opt Lett; 2013 Nov; 38(22):4758-61. PubMed ID: 24322125 [TBL] [Abstract][Full Text] [Related]
19. A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Halas NJ; Lal S; Link S; Chang WS; Natelson D; Hafner JH; Nordlander P Adv Mater; 2012 Sep; 24(36):4842-77, 4774. PubMed ID: 22858826 [TBL] [Abstract][Full Text] [Related]