These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26383818)

  • 21. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perfect absorption and phase singularities induced by surface lattice resonances for plasmonic nanoparticle array on a metallic film.
    Bai Y; Zheng H; Zhang Q; Yu Y; Liu SD
    Opt Express; 2022 Dec; 30(25):45400-45412. PubMed ID: 36522946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy.
    Chen S; Zhang Y; Shih TM; Yang W; Hu S; Hu X; Li J; Ren B; Mao B; Yang Z; Tian Z
    Nano Lett; 2018 Apr; 18(4):2209-2216. PubMed ID: 29504760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated plasmon-enhanced Raman scattering (iPERS) spectroscopy.
    Wang H; Li H; Xu S; Zhao B; Xu W
    Sci Rep; 2017 Nov; 7(1):14630. PubMed ID: 29116139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.
    Drozdowicz-Tomsia K; Baltar HT; Goldys EM
    Langmuir; 2012 Jun; 28(24):9071-81. PubMed ID: 22439753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition-Metal Decorated Aluminum Nanocrystals.
    Swearer DF; Leary RK; Newell R; Yazdi S; Robatjazi H; Zhang Y; Renard D; Nordlander P; Midgley PA; Halas NJ; Ringe E
    ACS Nano; 2017 Oct; 11(10):10281-10288. PubMed ID: 28945360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupled plasmons in aluminum nanoparticle superclusters.
    Muhammed MM; Alrebdi TA; Chamkha AJ; Mokkath JH
    Phys Chem Chem Phys; 2022 Dec; 24(48):29528-29538. PubMed ID: 36448566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.
    Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S
    ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving Aluminum Ultraviolet Plasmonic Activity through a 1 nm ta-C Film.
    Wang J; Wu Z; Wei J; Hu J; Yu H; Su G; Hu L; Yan X; Zhan P; Liu F
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7672-7679. PubMed ID: 33512139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excitation of dark multipolar plasmonic resonances at terahertz frequencies.
    Chen L; Wei Y; Zang X; Zhu Y; Zhuang S
    Sci Rep; 2016 Feb; 6():22027. PubMed ID: 26903382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An asymmetric aluminum active quantum plasmonic device.
    Mokkath JH; Henzie J
    Phys Chem Chem Phys; 2020 Jan; 22(3):1416-1421. PubMed ID: 31859295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays.
    Olson J; Manjavacas A; Basu T; Huang D; Schlather AE; Zheng B; Halas NJ; Nordlander P; Link S
    ACS Nano; 2016 Jan; 10(1):1108-17. PubMed ID: 26639191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmons in the metallic nanoparticle-film system as a tunable impurity problem.
    Le F; Lwin NZ; Steele JM; Käll M; Halas NJ; Nordlander P
    Nano Lett; 2005 Oct; 5(10):2009-13. PubMed ID: 16218728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aluminum Nanorods.
    Clark BD; Jacobson CR; Lou M; Yang J; Zhou L; Gottheim S; DeSantis CJ; Nordlander P; Halas NJ
    Nano Lett; 2018 Feb; 18(2):1234-1240. PubMed ID: 29272131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extremely Ultranarrow Linewidth Based on Low-Symmetry Al Nanoellipse Metasurface.
    Wang L; Li H; Zheng J; Li L
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film.
    Brunazzo D; Descrovi E; Martin OJ
    Opt Lett; 2009 May; 34(9):1405-7. PubMed ID: 19412287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultraviolet surface plasmon-coupled emission using thin aluminum films.
    Gryczynski I; Malicka J; Gryczynski Z; Nowaczyk K; Lakowicz JR
    Anal Chem; 2004 Jul; 76(14):4076-81. PubMed ID: 15253645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aluminum nanoparticle films with an enhanced hot-spot intensity for high-efficiency SERS.
    Li Z; Li C; Yu J; Li Z; Zhao X; Liu A; Jiang S; Yang C; Zhang C; Man B
    Opt Express; 2020 Mar; 28(7):9174-9185. PubMed ID: 32225529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theta-shaped plasmonic nanostructures: bringing "dark" multipole plasmon resonances into action via conductive coupling.
    Habteyes TG; Dhuey S; Cabrini S; Schuck PJ; Leone SR
    Nano Lett; 2011 Apr; 11(4):1819-25. PubMed ID: 21425843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.