These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26383966)

  • 21. Research on the Electrochemical Performance of Rutile and Anatase Composite TiO2 Nanotube Arrays in Lithium-Ion Batteries.
    Wei J; Liu JX; Wu ZY; Zhan ZL; Shi J; Xu K
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5013-9. PubMed ID: 26373069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of TiO2 nanosheets via an exfoliation route assisted by a surfactant.
    Leng M; Chen Y; Xue J
    Nanoscale; 2014 Aug; 6(15):8531-4. PubMed ID: 24958361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CuO Nanoplates for High-Performance Potassium-Ion Batteries.
    Cao K; Liu H; Li W; Han Q; Zhang Z; Huang K; Jing Q; Jiao L
    Small; 2019 Sep; 15(36):e1901775. PubMed ID: 31339229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries.
    Liu Y; Wang W; Gu L; Wang Y; Ying Y; Mao Y; Sun L; Peng X
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9850-5. PubMed ID: 24010720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-organic framework-derived mesoporous octahedral copper oxide/titania composites for high-performance lithium-ion batteries.
    Wang DP; Fu M; Ha Y; Wang H; Wu R
    J Colloid Interface Sci; 2018 Nov; 529():265-272. PubMed ID: 29908402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New Approach to Create TiO2(B)/Carbon Core/Shell Nanotubes: Ideal Structure for Enhanced Lithium Ion Storage.
    Zhu X; Yang X; Lv C; Guo S; Li J; Zheng Z; Zhu H; Yang D
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18815-21. PubMed ID: 27383450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lithiation of silicon nanoparticles confined in carbon nanotubes.
    Yu WJ; Liu C; Hou PX; Zhang L; Shan XY; Li F; Cheng HM
    ACS Nano; 2015 May; 9(5):5063-71. PubMed ID: 25869474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries.
    Liao JY; Xiao X; Higgins D; Lui G; Chen Z
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):568-74. PubMed ID: 24328159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional SnO₂@TiO₂ double-shell nanotubes on carbon cloth as a flexible anode for lithium-ion batteries.
    Zhang H; Ren W; Cheng C
    Nanotechnology; 2015 Jul; 26(27):274002. PubMed ID: 26082042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional mesoporous sandwich-like g-C
    Kang S; Li X; Yin C; Wang J; Aslam MS; Qi H; Cao Y; Jin J; Cui L
    J Colloid Interface Sci; 2019 Oct; 554():269-277. PubMed ID: 31301527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of a γ-Fe2 O3 /Ag nanowire coaxial nanocable for high-performance lithium-ion batteries.
    Geng H; Ge D; Lu S; Wang J; Ye Z; Yang Y; Zheng J; Gu H
    Chemistry; 2015 Jul; 21(31):11129-33. PubMed ID: 26102517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries.
    Zhou D; Song WL; Fan LZ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of pH on the interlayer distances of elongated titanate nanotubes and their use as a Li-ion battery anode.
    Yarali M; Biçer E; Gürsel SA; Yürüm A
    Nanotechnology; 2016 Jan; 27(1):015401. PubMed ID: 26597213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple fabrication of interconnected CuO nanotube electrodes for high-performance lithium-ion batteries.
    Lee JI; Choi S; Park S
    Chem Asian J; 2013 Jul; 8(7):1377-80. PubMed ID: 23733416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasma-Induced Oxygen Vacancies in Urchin-Like Anatase Titania Coated by Carbon for Excellent Sodium-Ion Battery Anodes.
    Gan Q; He H; Zhao K; He Z; Liu S; Yang S
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7031-7042. PubMed ID: 29338183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core-shell carbon-coated CuO nanocomposites: a highly stable electrode material for supercapacitors and lithium-ion batteries.
    Wen T; Wu XL; Zhang S; Wang X; Xu AW
    Chem Asian J; 2015 Mar; 10(3):595-601. PubMed ID: 25663599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freestanding Three-Dimensional CuO/NiO Core-Shell Nanowire Arrays as High-Performance Lithium-Ion Battery Anode.
    Cheng YW; Chen CH; Yang SW; Li YC; Peng BL; Chang CC; Wang RC; Liu CP
    Sci Rep; 2018 Dec; 8(1):18034. PubMed ID: 30575773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hollow Multishelled Heterostructured Anatase/TiO
    Ren H; Yu R; Qi J; Zhang L; Jin Q; Wang D
    Adv Mater; 2019 Mar; 31(10):e1805754. PubMed ID: 30633398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HF-free synthesis of anatase TiO2 nanosheets with largely exposed and clean {001} facets and their enhanced rate performance as anodes of lithium-ion battery.
    Cheng XL; Hu M; Huang R; Jiang JS
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19176-83. PubMed ID: 25295712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.