BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26384212)

  • 1. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread.
    García-Mantrana I; Yebra MJ; Haros M; Monedero V
    Int J Food Microbiol; 2016 Jan; 216():18-24. PubMed ID: 26384212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus casei Expressing Phytases From Bifidobacteria.
    García-Mantrana I; Monedero V; Haros M
    Plant Foods Hum Nutr; 2015 Sep; 70(3):269-74. PubMed ID: 26003176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myo-inositol hexakisphosphate degradation by Bifidobacterium pseudocatenulatum ATCC 27919 improves mineral availability of high fibre rye-wheat sour bread.
    García-Mantrana I; Monedero V; Haros M
    Food Chem; 2015 Jul; 178():267-75. PubMed ID: 25704711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytate reduction in bran-enriched bread by phytase-producing bifidobacteria.
    Sanz-Penella JM; Tamayo-Ramos JA; Sanz Y; Haros M
    J Agric Food Chem; 2009 Nov; 57(21):10239-44. PubMed ID: 19817458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697.
    Tamayo-Ramos JA; Sanz-Penella JM; Yebra MJ; Monedero V; Haros M
    Appl Environ Microbiol; 2012 Jul; 78(14):5013-5. PubMed ID: 22582052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of phytate-degrading human bifidobacteria and application in whole wheat dough fermentation.
    Palacios MC; Haros M; Rosell CM; Sanz Y
    Food Microbiol; 2008 Feb; 25(1):169-76. PubMed ID: 17993391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity.
    Leenhardt F; Levrat-Verny MA; Chanliaud E; Rémésy C
    J Agric Food Chem; 2005 Jan; 53(1):98-102. PubMed ID: 15631515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability.
    Sanz-Penella JM; Frontela C; Ros G; Martinez C; Monedero V; Haros M
    J Agric Food Chem; 2012 Nov; 60(47):11787-92. PubMed ID: 23151205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study.
    Reale A; Mannina L; Tremonte P; Sobolev AP; Succi M; Sorrentino E; Coppola R
    J Agric Food Chem; 2004 Oct; 52(20):6300-5. PubMed ID: 15453704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Lactobacilli in Cereal-Legume Fermentation and as Potential Probiotics towards Phytate Hydrolysis.
    Amritha GK; Venkateswaran G
    Probiotics Antimicrob Proteins; 2018 Dec; 10(4):647-653. PubMed ID: 28936766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697.
    Haros M; Bielecka M; Honke J; Sanz Y
    Int J Food Microbiol; 2007 Jun; 117(1):76-84. PubMed ID: 17462768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation.
    Reale A; Konietzny U; Coppola R; Sorrentino E; Greiner R
    J Agric Food Chem; 2007 Apr; 55(8):2993-7. PubMed ID: 17373819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplementation of alkaline phytase (Ds11) in whole-wheat bread reduces phytate content and improves mineral solubility.
    Park YJ; Park J; Park KH; Oh BC; Auh JH
    J Food Sci; 2011 Aug; 76(6):C791-4. PubMed ID: 21623782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of iron bioavailability in whole wheat bread by addition of phytase-producing bifidobacteria.
    Sanz-Penella JM; Laparra JM; Sanz Y; Haros M
    J Agric Food Chem; 2012 Mar; 60(12):3190-5. PubMed ID: 22369315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral and Phytic Acid Content as Well as Phytase Activity in Flours and Breads Made from Different Wheat Species.
    Longin CFH; Afzal M; Pfannstiel J; Bertsche U; Melzer T; Ruf A; Heger C; Pfaff T; Schollenberger M; Rodehutscord M
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profile and bioavailability analysis of myo-inositol phosphates in rye bread supplemented with phytases: a study using an in vitro method and Caco-2 monolayers.
    Duliński R; Cielecka EK; Pierzchalska M; Byczyński Ł; Żyła K
    Int J Food Sci Nutr; 2016 Jun; 67(4):454-60. PubMed ID: 27019314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of phytate in the gut of pigs--pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved.
    Schlemmer U; Jany KD; Berk A; Schulz E; Rechkemmer G
    Arch Tierernahr; 2001; 55(4):255-80. PubMed ID: 12357589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential.
    Haros M; Carlsson NG; Almgren A; Larsson-Alminger M; Sandberg AS; Andlid T
    Int J Food Microbiol; 2009 Sep; 135(1):7-14. PubMed ID: 19674804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread.
    Cizeikiene D; Juodeikiene G; Bartkiene E; Damasius J; Paskevicius A
    Int J Food Sci Nutr; 2015; 66(7):736-42. PubMed ID: 26397032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.