BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26384212)

  • 21. The effect of food processing on phytate hydrolysis and availability of iron and zinc.
    Sandberg AS
    Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry.
    Milanović V; Osimani A; Garofalo C; Belleggia L; Maoloni A; Cardinali F; Mozzon M; Foligni R; Aquilanti L; Clementi F
    PLoS One; 2020; 15(7):e0236190. PubMed ID: 32702068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered phytases for emerging biotechnological applications beyond animal feeding.
    Herrmann KR; Ruff AJ; Infanzón B; Schwaneberg U
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6435-6448. PubMed ID: 31254000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.
    Andlid TA; Veide J; Sandberg AS
    Int J Food Microbiol; 2004 Dec; 97(2):157-69. PubMed ID: 15541802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin.
    Brejnholt SM; Dionisio G; Glitsoe V; Skov LK; Brinch-Pedersen H
    J Sci Food Agric; 2011 Jun; 91(8):1398-405. PubMed ID: 21387323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of flour blend composition on fermentation kinetics and phytate hydrolysis of sourdough used to make injera.
    Baye K; Mouquet-Rivier C; Icard-Vernière C; Rochette I; Guyot JP
    Food Chem; 2013 May; 138(1):430-6. PubMed ID: 23265508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour.
    Lopez HW; Ouvry A; Bervas E; Guy C; Messager A; Demigne C; Remesy C
    J Agric Food Chem; 2000 Jun; 48(6):2281-5. PubMed ID: 10888537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium.
    Lopez HW; Krespine V; Guy C; Messager A; Demigne C; Remesy C
    J Agric Food Chem; 2001 May; 49(5):2657-62. PubMed ID: 11368651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Making bread with sourdough improves mineral bioavailability from reconstituted whole wheat flour in rats.
    Lopez HW; Duclos V; Coudray C; Krespine V; Feillet-Coudray C; Messager A; Demigné C; Rémésy C
    Nutrition; 2003 Jun; 19(6):524-30. PubMed ID: 12781853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of natural starters used for sourdough bread in Morocco on phytate biodegradation.
    Chaoui A; Faid M; Belhcen R
    East Mediterr Health J; 2003; 9(1-2):141-7. PubMed ID: 15562743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytase activity from Lactobacillus spp. in calcium-fortified soymilk.
    Tang AL; Wilcox G; Walker KZ; Shah NP; Ashton JF; Stojanovska L
    J Food Sci; 2010 Aug; 75(6):M373-6. PubMed ID: 20722939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties.
    Wyss M; Brugger R; Kronenberger A; Rémy R; Fimbel R; Oesterhelt G; Lehmann M; van Loon AP
    Appl Environ Microbiol; 1999 Feb; 65(2):367-73. PubMed ID: 9925555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of phytate by Pichia kudriavzevii TY13 and Hanseniaspora guilliermondii TY14 in Tanzanian togwa.
    Hellström AM; Almgren A; Carlsson NG; Svanberg U; Andlid TA
    Int J Food Microbiol; 2012 Feb; 153(1-2):73-7. PubMed ID: 22112916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical properties and substrate specificities of alkaline and histidine acid phytases.
    Oh BC; Choi WC; Park S; Kim YO; Oh TK
    Appl Microbiol Biotechnol; 2004 Jan; 63(4):362-72. PubMed ID: 14586576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives.
    Nam SJ; Kim YO; Ko TK; Kang JK; Chun KH; Auh JH; Lee CS; Lee IK; Park S; Oh BC
    J Microbiol Biotechnol; 2014 Oct; 24(10):1413-20. PubMed ID: 25112322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli.
    Greiner R; Carlsson N; Alminger ML
    J Biotechnol; 2001 Nov; 84(1):53-62. PubMed ID: 11035187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytase activity as a novel metabolic feature in Bifidobacterium.
    Haros M; Bielecka M; Sanz Y
    FEMS Microbiol Lett; 2005 Jun; 247(2):231-9. PubMed ID: 15935567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis.
    Brinch-Pedersen H; Hatzack F; Stöger E; Arcalis E; Pontopidan K; Holm PB
    J Agric Food Chem; 2006 Jun; 54(13):4624-32. PubMed ID: 16787007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate.
    Castro-Alba V; Lazarte CE; Perez-Rea D; Carlsson NG; Almgren A; Bergenståhl B; Granfeldt Y
    J Sci Food Agric; 2019 Aug; 99(11):5239-5248. PubMed ID: 31062366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants.
    Faba-Rodriguez R; Gu Y; Salmon M; Dionisio G; Brinch-Pedersen H; Brearley CA; Hemmings AM
    Plant Commun; 2022 Mar; 3(2):100305. PubMed ID: 35529950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.