BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26384355)

  • 1. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver.
    Zhao Y; Zhou J; Liu D; Dong F; Cheng H; Wang W; Pang Y; Wang Y; Mu X; Ni Y; Li Z; Xu H; Hao S; Wang X; Ma S; Wang QF; Xiao G; Yuan W; Liu B; Cheng T
    Blood; 2015 Nov; 126(21):2383-91. PubMed ID: 26384355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATF4, a new player in fetal HSC expansion.
    Rieger MA
    Blood; 2015 Nov; 126(21):2351-2. PubMed ID: 26585804
    [No Abstract]   [Full Text] [Related]  

  • 3. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.
    Chou S; Lodish HF
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7799-804. PubMed ID: 20385801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver.
    Iwasaki H; Arai F; Kubota Y; Dahl M; Suda T
    Blood; 2010 Jul; 116(4):544-53. PubMed ID: 20442369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche.
    Zheng J; Huynh H; Umikawa M; Silvany R; Zhang CC
    Blood; 2011 Jan; 117(2):470-9. PubMed ID: 20959605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BLOS2 maintains hematopoietic stem cells in the fetal liver via repressing Notch signaling.
    He Q; Gao S; Lv J; Li W; Liu F
    Exp Hematol; 2017 Jul; 51():1-6.e2. PubMed ID: 28456747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxic induction of vascular endothelial growth factor regulates erythropoiesis but not hematopoietic stem cell function in the fetal liver.
    Rehn M; Kertész Z; Cammenga J
    Exp Hematol; 2014 Nov; 42(11):941-4.e1. PubMed ID: 25220588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche.
    Rehn M; Olsson A; Reckzeh K; Diffner E; Carmeliet P; Landberg G; Cammenga J
    Blood; 2011 Aug; 118(6):1534-43. PubMed ID: 21670467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiopoietin-like protein 3 promotes preservation of stemness during ex vivo expansion of murine hematopoietic stem cells.
    Farahbakhshian E; Verstegen MM; Visser TP; Kheradmandkia S; Geerts D; Arshad S; Riaz N; Grosveld F; van Til NP; Meijerink JP
    PLoS One; 2014; 9(8):e105642. PubMed ID: 25170927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the human fetal liver hematopoietic microenvironment.
    Martin MA; Bhatia M
    Stem Cells Dev; 2005 Oct; 14(5):493-504. PubMed ID: 16305335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fetal liver: an ideal niche for hematopoietic stem cell expansion.
    Gao S; Liu F
    Sci China Life Sci; 2018 Aug; 61(8):885-892. PubMed ID: 29934917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Expansion of bone marrow LTC-ICs in vitro by mouse fetal liver-derived stromal cell lines].
    Yuan CH; Liu B; Wu Y; Zhang Y; Mao N
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):450-5. PubMed ID: 15969063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells.
    Zhang CC; Kaba M; Ge G; Xie K; Tong W; Hug C; Lodish HF
    Nat Med; 2006 Feb; 12(2):240-5. PubMed ID: 16429146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the microenvironment of the embryonic aorta-gonad-mesonephros region in hematopoiesis.
    Nishikawa M; Tahara T; Hinohara A; Miyajima A; Nakahata T; Shimosaka A
    Ann N Y Acad Sci; 2001 Jun; 938():109-16. PubMed ID: 11458497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Mimicking the Fetal Liver Niche: The Influence of Elasticity and Oxygen Tension on Hematopoietic Stem/Progenitor Cells Cultured in 3D Fibrin Hydrogels.
    Garcia-Abrego C; Zaunz S; Toprakhisar B; Subramani R; Deschaume O; Jooken S; Bajaj M; Ramon H; Verfaillie C; Bartic C; Patterson J
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32887387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential hematopoietic supportive potential and gene expression of stroma cell lines from midgestation mouse placenta and adult bone marrow.
    Wang Y; Nathanson L; McNiece IK
    Cell Transplant; 2011; 20(5):707-26. PubMed ID: 21054929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells.
    Hadland BK; Varnum-Finney B; Poulos MG; Moon RT; Butler JM; Rafii S; Bernstein ID
    J Clin Invest; 2015 May; 125(5):2032-45. PubMed ID: 25866967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function.
    Manesia JK; Franch M; Tabas-Madrid D; Nogales-Cadenas R; Vanwelden T; Van Den Bosch E; Xu Z; Pascual-Montano A; Khurana S; Verfaillie CM
    Stem Cells Dev; 2017 Apr; 26(8):573-584. PubMed ID: 27958775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human CD34(lo)CD133(lo) fetal liver cells support the expansion of human CD34(hi)CD133(hi) hematopoietic stem cells.
    Yong KS; Keng CT; Tan SQ; Loh E; Chang KT; Tan TC; Hong W; Chen Q
    Cell Mol Immunol; 2016 Sep; 13(5):605-14. PubMed ID: 27593483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The migration of hematopoietic progenitors from the fetal liver to the fetal bone marrow: lessons learned and possible clinical applications.
    Ciriza J; Thompson H; Petrosian R; Manilay JO; García-Ojeda ME
    Exp Hematol; 2013 May; 41(5):411-23. PubMed ID: 23395775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.