BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26384475)

  • 1. Rhamnolipids know-how: Looking for strategies for its industrial dissemination.
    Lovaglio RB; Silva VL; Ferreira H; Hausmann R; Contiero J
    Biotechnol Adv; 2015 Dec; 33(8):1715-26. PubMed ID: 26384475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhamnolipids--next generation surfactants?
    Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R
    J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants.
    Abdel-Mawgoud AM; Lépine F; Déziel E
    Chem Biol; 2014 Jan; 21(1):156-64. PubMed ID: 24374163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting.
    Dobler L; Vilela LF; Almeida RV; Neves BC
    N Biotechnol; 2016 Jan; 33(1):123-35. PubMed ID: 26409933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production.
    Müller MM; Hausmann R
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):251-64. PubMed ID: 21667084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications.
    Maier RM; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):625-33. PubMed ID: 11131386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis.
    Tavares LF; Silva PM; Junqueira M; Mariano DC; Nogueira FC; Domont GB; Freire DM; Neves BC
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1909-21. PubMed ID: 23053103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery.
    Zhao F; Wang Q; Zhang Y; Lei L
    Microb Cell Fact; 2021 May; 20(1):103. PubMed ID: 34016105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhamnolipid biosurfactants: production and their potential in environmental biotechnology.
    Pornsunthorntawee O; Wongpanit P; Rujiravanit R
    Adv Exp Med Biol; 2010; 672():211-21. PubMed ID: 20545285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of rhamnolipid biosurfactants.
    Ochsner UA; Hembach T; Fiechter A
    Adv Biochem Eng Biotechnol; 1996; 53():89-118. PubMed ID: 8578973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.
    Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T
    J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of rhamnolipids by Pseudomonas aeruginosa.
    Soberón-Chávez G; Lépine F; Déziel E
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):718-25. PubMed ID: 16160828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhamnolipid emulsifying activity and emulsion stability: pH rules.
    Lovaglio RB; dos Santos FJ; Jafelicci M; Contiero J
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):301-5. PubMed ID: 21454058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning.
    Kim LH; Jung Y; Kim SJ; Kim CM; Yu HW; Park HD; Kim IS
    Biofouling; 2015; 31(2):211-20. PubMed ID: 25789851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current status in biotechnological production and applications of glycolipid biosurfactants.
    Paulino BN; Pessôa MG; Mano MC; Molina G; Neri-Numa IA; Pastore GM
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10265-10293. PubMed ID: 27844141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source.
    Wadekar SD; Kale SB; Lali AM; Bhowmick DN; Pratap AP
    Prep Biochem Biotechnol; 2012; 42(3):249-66. PubMed ID: 22509850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli.
    Du J; Zhang A; Hao J; Wang J
    Biotechnol Lett; 2017 Jul; 39(7):1041-1048. PubMed ID: 28374071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced rhamnolipids production in Pseudomonas aeruginosa SG by selectively blocking metabolic bypasses of glycosyl and fatty acid precursors.
    Lei L; Zhao F; Han S; Zhang Y
    Biotechnol Lett; 2020 Jun; 42(6):997-1002. PubMed ID: 32060764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI.
    Nitschke M; Costa SG; Haddad R; Gonçalves LA; Eberlin MN; Contiero J
    Biotechnol Prog; 2005; 21(5):1562-6. PubMed ID: 16209563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.