BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26384475)

  • 21. Pantoea sp. P37 as a novel nonpathogenic host for the heterologous production of rhamnolipids.
    Nawrath MM; Ottenheim C; Wu JC; Zimmermann W
    Microbiologyopen; 2020 May; 9(5):e1019. PubMed ID: 32113194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host.
    Cabrera-Valladares N; Richardson AP; Olvera C; Treviño LG; Déziel E; Lépine F; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):187-94. PubMed ID: 16847602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste.
    Nitschke M; Costa SG; Contiero J
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2066-74. PubMed ID: 19649781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste.
    Thanomsub B; Pumeechockchai W; Limtrakul A; Arunrattiyakorn P; Petchleelaha W; Nitoda T; Kanzaki H
    Bioresour Technol; 2006 Dec; 97(18):2457-61. PubMed ID: 16697639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial Biosurfactants-an Ecofriendly Boon to Industries for Green Revolution.
    Sharma P; Sharma N
    Recent Pat Biotechnol; 2020; 14(3):169-183. PubMed ID: 31830890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection.
    Chebbi A; Elshikh M; Haque F; Ahmed S; Dobbin S; Marchant R; Sayadi S; Chamkha M; Banat IM
    J Basic Microbiol; 2017 May; 57(5):364-375. PubMed ID: 28156000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The involvement of rhamnolipids in microbial cell adhesion and biofilm development - an approach for control?
    Nickzad A; Déziel E
    Lett Appl Microbiol; 2014 May; 58(5):447-53. PubMed ID: 24372465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome Characterization of Pseudomonas aeruginosa KT1115, a High Di-rhamnolipid-Producing Strain with Strong Oils Metabolizing Ability.
    Liu S; Xu N; Liu H; Zhou J; Xin F; Zhang W; Qian X; Jiang M; Dong W
    Curr Microbiol; 2020 Aug; 77(8):1890-1895. PubMed ID: 32356168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.
    Han L; Liu P; Peng Y; Lin J; Wang Q; Ma Y
    J Appl Microbiol; 2014 Jul; 117(1):139-50. PubMed ID: 24703158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules.
    Nitschke M; Costa SG; Contiero J
    Biotechnol Prog; 2005; 21(6):1593-600. PubMed ID: 16321040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Hori K; Marsudi S; Unno H
    Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multicomponent biosurfactants--A "Green Toolbox" extension.
    Jirku V; Cejkova A; Schreiberova O; Jezdik R; Masak J
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1272-6. PubMed ID: 25773671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhamnolipids produced by Pseudomonas: from molecular genetics to the market.
    Soberón-Chávez G; González-Valdez A; Soto-Aceves MP; Cocotl-Yañez M
    Microb Biotechnol; 2021 Jan; 14(1):136-146. PubMed ID: 33151628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.
    De Rienzo MA; Martin PJ
    Curr Microbiol; 2016 Aug; 73(2):183-9. PubMed ID: 27113589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials.
    Rahman KS; Rahman TJ; McClean S; Marchant R; Banat IM
    Biotechnol Prog; 2002; 18(6):1277-81. PubMed ID: 12467462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosurfactant inducers for enhanced production of surfactin and rhamnolipids: an overview.
    de Oliveira Schmidt VK; de Souza Carvalho J; de Oliveira D; de Andrade CJ
    World J Microbiol Biotechnol; 2021 Jan; 37(2):21. PubMed ID: 33428050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene.
    Zhao Z; Selvam A; Wong JW
    Bioresour Technol; 2011 Mar; 102(5):3999-4007. PubMed ID: 21208798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass.
    Sodagari M; Wang H; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2013 Mar; 103():121-8. PubMed ID: 23201728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms.
    Irie Y; O'toole GA; Yuk MH
    FEMS Microbiol Lett; 2005 Sep; 250(2):237-43. PubMed ID: 16098688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial biosurfactants: challenges and opportunities for future exploitation.
    Marchant R; Banat IM
    Trends Biotechnol; 2012 Nov; 30(11):558-65. PubMed ID: 22901730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.