These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

758 related articles for article (PubMed ID: 26384626)

  • 1. Intraoperative Cerebral Autoregulation Assessment Using Ultrasound-Tagged Near-Infrared-Based Cerebral Blood Flow in Comparison to Transcranial Doppler Cerebral Flow Velocity: A Pilot Study.
    Murkin JM; Kamar M; Silman Z; Balberg M; Adams SJ
    J Cardiothorac Vasc Anesth; 2015 Oct; 29(5):1187-93. PubMed ID: 26384626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral Autoregulation Monitoring with Ultrasound-Tagged Near-Infrared Spectroscopy in Cardiac Surgery Patients.
    Hori D; Hogue CW; Shah A; Brown C; Neufeld KJ; Conte JV; Price J; Sciortino C; Max L; Laflam A; Adachi H; Cameron DE; Mandal K
    Anesth Analg; 2015 Nov; 121(5):1187-93. PubMed ID: 26334746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a stand-alone near-infrared spectroscopy system for monitoring cerebral autoregulation during cardiac surgery.
    Ono M; Zheng Y; Joshi B; Sigl JC; Hogue CW
    Anesth Analg; 2013 Jan; 116(1):198-204. PubMed ID: 23223100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Transcranial Doppler and Ultrasound-Tagged Near Infrared Spectroscopy for Measuring Relative Changes in Cerebral Blood Flow in Human Subjects.
    Lipnick MS; Cahill EA; Feiner JR; Bickler PE
    Anesth Analg; 2018 Feb; 126(2):579-587. PubMed ID: 29189269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass.
    Brady K; Joshi B; Zweifel C; Smielewski P; Czosnyka M; Easley RB; Hogue CW
    Stroke; 2010 Sep; 41(9):1951-6. PubMed ID: 20651274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients.
    Rivera-Lara L; Geocadin R; Zorrilla-Vaca A; Healy R; Radzik BR; Palmisano C; Mirski M; Ziai WC; Hogue C
    Neurocrit Care; 2017 Dec; 27(3):362-369. PubMed ID: 28664392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral Small Vessel, But Not Large Vessel Disease, Is Associated With Impaired Cerebral Autoregulation During Cardiopulmonary Bypass: A Retrospective Cohort Study.
    Nomura Y; Faegle R; Hori D; Al-Qamari A; Nemeth AJ; Gottesman R; Yenokyan G; Brown C; Hogue CW
    Anesth Analg; 2018 Dec; 127(6):1314-1322. PubMed ID: 29677060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal blood pressure during cardiopulmonary bypass defined by cerebral autoregulation monitoring.
    Hori D; Nomura Y; Ono M; Joshi B; Mandal K; Cameron D; Kocherginsky M; Hogue CW
    J Thorac Cardiovasc Surg; 2017 Nov; 154(5):1590-1598.e2. PubMed ID: 29042040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients.
    Hori D; Hogue C; Adachi H; Max L; Price J; Sciortino C; Zehr K; Conte J; Cameron D; Mandal K
    Interact Cardiovasc Thorac Surg; 2016 Apr; 22(4):445-51. PubMed ID: 26763042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral Function and Perfusion during Cardiopulmonary Bypass: A Plea for a Multimodal Monitoring Approach.
    Thudium M; Heinze I; Ellerkmann RK; Hilbert T
    Heart Surg Forum; 2018 Jan; 21(1):E028-E035. PubMed ID: 29485961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction.
    Andropoulos DB; Stayer SA; McKenzie ED; Fraser CD
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):491-9. PubMed ID: 12658190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral blood flow autoregulation assessment by correlation analysis between mean arterial blood pressure and transcranial doppler sonography or near infrared spectroscopy is different: A pilot study.
    Thudium M; Moestl S; Hoffmann F; Hoff A; Kornilov E; Heusser K; Tank J; Soehle M
    PLoS One; 2023; 18(6):e0287578. PubMed ID: 37347763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Intraoperative Determination and Reporting of Cerebral Autoregulation State Using Near-Infrared Spectroscopy.
    Montgomery D; Brown C; Hogue CW; Brady K; Nakano M; Nomura Y; Antunes A; Addison PS
    Anesth Analg; 2020 Nov; 131(5):1520-1528. PubMed ID: 33079875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery.
    Brady KM; Mytar JO; Lee JK; Cameron DE; Vricella LA; Thompson WR; Hogue CW; Easley RB
    Stroke; 2010 Sep; 41(9):1957-62. PubMed ID: 20651273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood Pressure Deviations From Optimal Mean Arterial Pressure During Cardiac Surgery Measured With a Novel Monitor of Cerebral Blood Flow and Risk for Perioperative Delirium: A Pilot Study.
    Hori D; Max L; Laflam A; Brown C; Neufeld KJ; Adachi H; Sciortino C; Conte JV; Cameron DE; Hogue CW; Mandal K
    J Cardiothorac Vasc Anesth; 2016 Jun; 30(3):606-12. PubMed ID: 27321787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous cerebral blood flow autoregulation monitoring in patients undergoing liver transplantation.
    Zheng Y; Villamayor AJ; Merritt W; Pustavoitau A; Latif A; Bhambhani R; Frank S; Gurakar A; Singer A; Cameron A; Stevens RD; Hogue CW
    Neurocrit Care; 2012 Aug; 17(1):77-84. PubMed ID: 22644887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time continuous neuromonitoring combines transcranial cerebral Doppler with near-infrared spectroscopy cerebral oxygen saturation during total aortic arch replacement procedure: a pilot study.
    Wang X; Ji B; Yang B; Liu G; Miao N; Yang J; Liu J; Long C
    ASAIO J; 2012; 58(2):122-6. PubMed ID: 22370681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass.
    Joshi B; Ono M; Brown C; Brady K; Easley RB; Yenokyan G; Gottesman RF; Hogue CW
    Anesth Analg; 2012 Mar; 114(3):503-10. PubMed ID: 22104067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Cerebral Autoregulation Patterns with Near-infrared Spectroscopy during Pharmacological-induced Pressure Changes.
    Moerman AT; Vanbiervliet VM; Van Wesemael A; Bouchez SM; Wouters PF; De Hert SG
    Anesthesiology; 2015 Aug; 123(2):327-35. PubMed ID: 26035251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of cerebral blood flow autoregulation: physiologic basis, measurement, and clinical implications.
    Vu EL; Brown CH; Brady KM; Hogue CW
    Br J Anaesth; 2024 Jun; 132(6):1260-1273. PubMed ID: 38471987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.