BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26384700)

  • 1. Repair of segmental ulna defects using a β-TCP implant in combination with a heparan sulfate glycosaminoglycan variant.
    Rai B; Chatterjea A; Lim ZXH; Tan TC; Sawyer AA; Hosaka YZ; Murali S; Lee JJL; Fenwick SA; Hui JH; Nurcombe V; Cool SM
    Acta Biomater; 2015 Dec; 28():193-204. PubMed ID: 26384700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A polycaprolactone-β-tricalcium phosphate-heparan sulphate device for cranioplasty.
    Le BQ; Rai B; Hui Lim ZX; Tan TC; Lin T; Lin Lee JJ; Murali S; Teoh SH; Nurcombe V; Cool SM
    J Craniomaxillofac Surg; 2019 Feb; 47(2):341-348. PubMed ID: 30579746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications.
    Bhakta G; Ekaputra AK; Rai B; Abbah SA; Tan TC; Le BQ; Chatterjea A; Hu T; Lin T; Arafat MT; van Wijnen AJ; Goh J; Nurcombe V; Bhakoo K; Birch W; Xu L; Gibson I; Wong HK; Cool SM
    Spine J; 2018 May; 18(5):818-830. PubMed ID: 29269312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.
    Yamamoto M; Hokugo A; Takahashi Y; Nakano T; Hiraoka M; Tabata Y
    Biomaterials; 2015 Jul; 56():18-25. PubMed ID: 25934275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a BMP2-binding heparan sulphate to promote periodontal regeneration.
    Le BQ; Too JH; Tan TC; Smith RA; Nurcombe V; Cool SM; Yu N
    Eur Cell Mater; 2021 Aug; 42():139-153. PubMed ID: 34464450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomimetic collagen-bone granule-heparan sulfate combination scaffold for BMP2 delivery.
    Quang Le B; Chun Tan T; Lee SB; Woong Jang J; Sik Kim Y; Soo Lee J; Won Choi J; Sathiyanathan P; Nurcombe V; Cool SM
    Gene; 2021 Feb; 769():145217. PubMed ID: 33039540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of 45S5 Bioactive Glass in A Standard Calcium Phosphate Collagen Bone Graft Substitute on the Posterolateral Fusion of Rabbit Spine.
    Pugely AJ; Petersen EB; DeVries-Watson N; Fredericks DC
    Iowa Orthop J; 2017; 37():193-198. PubMed ID: 28852357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli-derived BMP-2-absorbed β-TCP granules induce bone regeneration in rabbit critical-sized femoral segmental defects.
    Kuroiwa Y; Niikura T; Lee SY; Oe K; Iwakura T; Fukui T; Matsumoto T; Matsushita T; Nishida K; Kuroda R
    Int Orthop; 2019 May; 43(5):1247-1253. PubMed ID: 30097727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone.
    Salkeld SL; Patron LP; Barrack RL; Cook SD
    J Bone Joint Surg Am; 2001 Jun; 83(6):803-16. PubMed ID: 11407788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffold implants for the controlled release of heparan sulfate (HS) and other glycosaminoglycan (GAG) species: this could facilitate the homing of adult stem cells for tissue/organ regeneration.
    Heng BC; Liu H; Cao T
    Med Hypotheses; 2005; 65(2):414-5. PubMed ID: 15922126
    [No Abstract]   [Full Text] [Related]  

  • 11. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna.
    Grundel RE; Chapman MW; Yee T; Moore DC
    Clin Orthop Relat Res; 1991 May; (266):244-58. PubMed ID: 1850335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun PLGA and β-TCP (Rebossis-85) in a Lapine Posterolateral Fusion Model.
    Nepola JC; Petersen EB; DeVries-Watson N; Grosland N; Fredericks DC
    Iowa Orthop J; 2019; 39(2):9-19. PubMed ID: 32577102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-TCP granules mixed with reticulated hyaluronic acid induce an increase in bone apposition.
    Aguado E; Pascaretti-Grizon F; Gaudin-Audrain C; Goyenvalle E; Chappard D
    Biomed Mater; 2014 Feb; 9(1):015001. PubMed ID: 24343316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects.
    Wei L; Yu D; Wang M; Deng L; Wu G; Liu Y
    Tissue Eng Part A; 2020 Feb; 26(3-4):120-129. PubMed ID: 31436137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strontium calcium phosphate for the repair of leporine (Oryctolagus cuniculus) ulna segmental defect.
    Mohan BG; Shenoy SJ; Babu SS; Varma HK; John A
    J Biomed Mater Res A; 2013 Jan; 101(1):261-71. PubMed ID: 22941787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone regeneration using composite non-demineralized xenogenic dentin with beta-tricalcium phosphate in experimental alveolar cleft repair in a rabbit model.
    Kamal M; Andersson L; Tolba R; Al-Asfour A; Bartella AK; Gremse F; Rosenhain S; Hölzle F; Kessler P; Lethaus B
    J Transl Med; 2017 Dec; 15(1):263. PubMed ID: 29274638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity-selected heparan sulfate collagen device promotes periodontal regeneration in an intrabony defect model in Macaca fascicularis.
    Luo X; Lau CS; Le BQ; Tan TC; Too JH; Smith RAA; Yu N; Cool SM
    Sci Rep; 2023 Jul; 13(1):11774. PubMed ID: 37479738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(6):1-57. PubMed ID: 23074475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Healing of an ulnar defect using a proprietary TCP bone graft substitute, JAX, in association with autologous osteogenic cells and growth factors.
    Clarke SA; Hoskins NL; Jordan GR; Marsh DR
    Bone; 2007 Apr; 40(4):939-47. PubMed ID: 17175212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate.
    Suh DY; Boden SD; Louis-Ugbo J; Mayr M; Murakami H; Kim HS; Minamide A; Hutton WC
    Spine (Phila Pa 1976); 2002 Feb; 27(4):353-60. PubMed ID: 11840099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.