These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 26384898)

  • 1. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble.
    Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F
    Ultrason Sonochem; 2016 Jan; 28():185-191. PubMed ID: 26384898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble.
    Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F
    Ultrason Sonochem; 2016 Mar; 29():447-54. PubMed ID: 26044460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical model for ice primary nucleation induced by acoustic cavitation.
    Saclier M; Peczalski R; Andrieu J
    Ultrason Sonochem; 2010 Jan; 17(1):98-105. PubMed ID: 19482538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of nuclei growth in ultrasound bubble nucleation.
    de Andrade MO; Haqshenas R; Pahk KJ; Saffari N
    Ultrason Sonochem; 2022 Aug; 88():106091. PubMed ID: 35839705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of static pressure on the inertial cavitation threshold.
    Bader KB; Raymond JL; Mobley J; Church CC; Felipe Gaitan D
    J Acoust Soc Am; 2012 Aug; 132(2):728-37. PubMed ID: 22894195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
    Louisnard O; Cogné C; Labouret S; Montes-Quiroz W; Peczalski R; Baillon F; Espitalier F
    Ultrason Sonochem; 2015 Sep; 26():186-192. PubMed ID: 25800984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of cavitation and ice nucleation in 'doubly-metastable' water: time-lapse photography and neutron diffraction.
    Barrow MS; Williams PR; Chan HH; Dore JC; Bellissent-Funel MC
    Phys Chem Chem Phys; 2012 Oct; 14(38):13255-61. PubMed ID: 22918522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPU-accelerated study of the inertial cavitation threshold in viscoelastic soft tissue using a dual-frequency driving signal.
    Filonets T; Solovchuk M
    Ultrason Sonochem; 2022 Aug; 88():106056. PubMed ID: 35728380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling photoacoustic cavitation nucleation and bubble dynamics with modified classical nucleation theory.
    Qin D; Feng Y; Wan M
    J Acoust Soc Am; 2015 Sep; 138(3):1282-9. PubMed ID: 26428766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the primary and secondary nucleation of ice by power ultrasound.
    Chow R; Blindt R; Chivers R; Povey M
    Ultrasonics; 2005 Feb; 43(4):227-30. PubMed ID: 15567197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic cavitation in 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide based ionic liquid.
    Merouani S; Hamdaoui O; Haddad B
    Ultrason Sonochem; 2018 Mar; 41():143-155. PubMed ID: 29137737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions.
    Qiu C; Krüger Y; Wilke M; Marti D; Rička J; Frenz M
    Phys Chem Chem Phys; 2016 Oct; 18(40):28227-28241. PubMed ID: 27711498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modelling of acoustic cavitation threshold in water with non-condensable bubble nuclei.
    Hong S; Son G
    Ultrason Sonochem; 2022 Feb; 83():105932. PubMed ID: 35121570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hysteresis of inertial cavitation activity induced by fluctuating bubble size distribution.
    Muleki Seya P; Desjouy C; Béra JC; Inserra C
    Ultrason Sonochem; 2015 Nov; 27():262-267. PubMed ID: 26186844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of ultrasound pressure and temperature fields in millisecond bubble nucleation.
    de Andrade MO; Haqshenas SR; Pahk KJ; Saffari N
    Ultrason Sonochem; 2019 Jul; 55():262-272. PubMed ID: 30952547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of entropy on the nucleation of cavitation bubbles in water under tension.
    Menzl G; Dellago C
    J Chem Phys; 2016 Dec; 145(21):211918. PubMed ID: 28799367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice nucleation triggered by negative pressure.
    Marcolli C
    Sci Rep; 2017 Nov; 7(1):16634. PubMed ID: 29192142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on rectified diffusion during ultrasound-induced heating.
    Webb IR; Payne SJ; Coussios CC
    J Acoust Soc Am; 2011 Nov; 130(5):3450-7. PubMed ID: 22088019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.