These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 26384909)
1. Dual frequency cavitation event sensor with iodide dosimeter. Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T Ultrason Sonochem; 2016 Jan; 28():276-282. PubMed ID: 26384909 [TBL] [Abstract][Full Text] [Related]
2. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis. Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM; Nilchiani V; Goudarzi H Ultrason Sonochem; 2011 Jan; 18(1):394-400. PubMed ID: 20678953 [TBL] [Abstract][Full Text] [Related]
3. Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T Ultrason Sonochem; 2013 Jan; 20(1):366-72. PubMed ID: 22766173 [TBL] [Abstract][Full Text] [Related]
4. Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound. Barati AH; Mokhtari-Dizaji M; Mozdarani H; Bathaie Z; Hassan ZM Ultrason Sonochem; 2007 Sep; 14(6):783-9. PubMed ID: 17347019 [TBL] [Abstract][Full Text] [Related]
5. Dual-frequency ultrasound activation of nanomicellar doxorubicin in targeted tumor chemotherapy. Hasanzadeh H; Mokhtari-Dizaji M; Zahra Bathaie S; Hassan ZM; Shahbazfar AA J Med Ultrason (2001); 2014 Apr; 41(2):139-50. PubMed ID: 27277765 [TBL] [Abstract][Full Text] [Related]
7. The effect of dual-frequency ultrasound waves on B16F10 melanoma cells: Sonodynamic therapy using nanoliposomes containing methylene blue. Adelnia A; Mokhtari-Dizaji M; Hoseinkhani S; Bakhshandeh M Skin Res Technol; 2021 May; 27(3):376-384. PubMed ID: 33085810 [TBL] [Abstract][Full Text] [Related]
8. Acoustic droplet vaporization and inertial cavitation thresholds and efficiencies of nanodroplets emulsions inside the focused region using a dual-frequency ring focused ultrasound. Xu S; Chang N; Wang R; Liu X; Guo S; Wang S; Zong Y; Wan M Ultrason Sonochem; 2018 Nov; 48():532-537. PubMed ID: 30080582 [TBL] [Abstract][Full Text] [Related]
9. Validation of an acoustic cavitation dose with hydroxyl radical production generated by inertial cavitation in pulsed mode: application to in vitro drug release from liposomes. Somaglino L; Bouchoux G; Mestas JL; Lafon C Ultrason Sonochem; 2011 Mar; 18(2):577-88. PubMed ID: 20801704 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of correlation between chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation. Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM Ultrason Sonochem; 2010 Jun; 17(5):863-9. PubMed ID: 20236851 [TBL] [Abstract][Full Text] [Related]
11. Comparing the in vivo sonodynamic effects of dual- and single-frequency ultrasound in breast adenocarcinoma. Alamolhoda M; Mokhtari-Dizaji M; Barati AH; Hasanzadeh H J Med Ultrason (2001); 2012 Jul; 39(3):115-25. PubMed ID: 27278971 [TBL] [Abstract][Full Text] [Related]
12. Treatment of murine tumors using dual-frequency ultrasound in an experimental in vivo model. Barati AH; Mokhtari-Dizaji M; Mozdarani H; Bathaie SZ; Hassan ZM Ultrasound Med Biol; 2009 May; 35(5):756-63. PubMed ID: 19195770 [TBL] [Abstract][Full Text] [Related]
13. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue. Wang M; Zhou Y Ultrason Sonochem; 2018 Apr; 42():327-338. PubMed ID: 29429677 [TBL] [Abstract][Full Text] [Related]
14. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system. Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Pseudorandom Sonications for Reducing Cavitation With a Clinical Neurosurgery HIFU Device. Lafon C; Moore D; Eames MDC; Snell J; Drainville RA; Padilla F IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1224-1233. PubMed ID: 33166253 [TBL] [Abstract][Full Text] [Related]
16. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model. Arvanitis CD; Vykhodtseva N; Jolesz F; Livingstone M; McDannold N J Neurosurg; 2016 May; 124(5):1450-9. PubMed ID: 26381252 [TBL] [Abstract][Full Text] [Related]
17. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors. Kirpalani DM; McQuinn KJ Ultrason Sonochem; 2006 Jan; 13(1):1-5. PubMed ID: 16223678 [TBL] [Abstract][Full Text] [Related]
18. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field. Hodnett M; Zeqiri B IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923 [TBL] [Abstract][Full Text] [Related]
19. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: II. Systematic Investigation in an Agar Material. Haller J; Wilkens V Ultrasound Med Biol; 2018 Feb; 44(2):397-415. PubMed ID: 29195755 [TBL] [Abstract][Full Text] [Related]
20. Effect of local dual frequency sonication on drug distribution from polymeric nanomicelles. Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM Ultrason Sonochem; 2011 Sep; 18(5):1165-71. PubMed ID: 21489850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]