BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26384974)

  • 21. Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells.
    Barrera I; Flores-Méndez M; Hernández-Kelly LC; Cid L; Huerta M; Zinker S; López-Bayghen E; Aguilera J; Ortega A
    Neurochem Int; 2010 Dec; 57(7):795-803. PubMed ID: 20817065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutamate-induced octamer DNA binding and transcriptional control in cultured radial glia cells.
    López-Bayghen E; Cruz-Solís I; Corona M; López-Colomé AM; Ortega A
    J Neurochem; 2006 Aug; 98(3):851-9. PubMed ID: 16787415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Valproate-dependent transcriptional regulation of GLAST/EAAT1 expression: involvement of Ying-Yang 1.
    Aguirre G; Rosas S; López-Bayghen E; Ortega A
    Neurochem Int; 2008 Jun; 52(7):1322-31. PubMed ID: 18336953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glial glutamate transporters: new actors in brain signaling.
    López-Bayghen E; Ortega A
    IUBMB Life; 2011 Oct; 63(10):816-23. PubMed ID: 21901813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutamate-dependent translational control through ribosomal protein S6 phosphorylation in cultured bergmann glial cells.
    Flores-Méndez M; Escalante-López M; Martínez-Lozada Z; Hernández-Kelly LC; Najimi M; Sokal E; Ortega A
    Neurochem Res; 2015 May; 40(5):915-23. PubMed ID: 25736255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells.
    Castro-Coronel Y; Del Razo LM; Huerta M; Hernandez-Lopez A; Ortega A; López-Bayghen E
    Toxicol Sci; 2011 Aug; 122(2):539-50. PubMed ID: 21602192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of glutamatergic transmission by bergmann glial cells in rat cerebellum in situ.
    Bordey A; Sontheimer H
    J Neurophysiol; 2003 Feb; 89(2):979-88. PubMed ID: 12574474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid increase of glial glutamate uptake via blockade of the protein kinase A pathway.
    Adolph O; Köster S; Räth M; Georgieff M; Weigt HU; Engele J; Senftleben U; Föhr KJ
    Glia; 2007 Dec; 55(16):1699-707. PubMed ID: 17886291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutamate down-regulates GLAST expression through AMPA receptors in Bergmann glial cells.
    López-Bayghen E; Espinoza-Rojo M; Ortega A
    Brain Res Mol Brain Res; 2003 Jul; 115(1):1-9. PubMed ID: 12824049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered expression of glutamate transporters under hypoxic conditions in vitro.
    Hsu L; Rockenstein E; Mallory M; Hashimoto M; Masliah E
    J Neurosci Res; 2001 Apr; 64(2):193-202. PubMed ID: 11288147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutamate regulates Oct-2 DNA-binding activity through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in cultured chick Bergmann glia cells.
    Méndez JA; López-Bayghen E; Rojas F; Hernández ME; Ortega A
    J Neurochem; 2004 Feb; 88(4):835-43. PubMed ID: 14756804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 5-Hydroxytryptamine-mediated increase in glutamate uptake by the leech giant glial cell.
    Hirth IC; Deitmer JW
    Glia; 2006 Dec; 54(8):786-94. PubMed ID: 16958089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of high-affinity glutamate uptake activity in Bergmann glia cells by glutamate.
    González MI; Ortega A
    Brain Res; 2000 Jun; 866(1-2):73-81. PubMed ID: 10825482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors signaling complexes in Bergmann glia.
    Millán A; Arias-Montaño JA; Méndez JA; Hernández-Kelly LC; Ortega A
    J Neurosci Res; 2004 Oct; 78(1):56-63. PubMed ID: 15372493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamate-dependent transcriptional regulation of GLAST: role of PKC.
    López-Bayghen E; Ortega A
    J Neurochem; 2004 Oct; 91(1):200-9. PubMed ID: 15379900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutamate-dependent translational control in cultured Bergmann glia cells: eIF2α phosphorylation.
    Flores-Méndez MA; Martínez-Lozada Z; Monroy HC; Hernández-Kelly LC; Barrera I; Ortega A
    Neurochem Res; 2013 Jul; 38(7):1324-32. PubMed ID: 23536022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells.
    Zepeda RC; Barrera I; Castelán F; Suárez-Pozos E; Melgarejo Y; González-Mejia E; Hernández-Kelly LC; López-Bayghen E; Aguilera J; Ortega A
    Neurochem Int; 2009 Sep; 55(5):282-7. PubMed ID: 19576515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA Methylation-Dependent Gene Expression Regulation of Glutamate Transporters in Cultured Radial Glial Cells.
    Rodríguez-Campuzano AG; Hernández-Kelly LC; Ortega A
    Mol Neurobiol; 2022 Mar; 59(3):1912-1924. PubMed ID: 35032319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutamate activates PP125(FAK) through AMPA/kainate receptors in Bergmann glia.
    Millán A; Aguilar P; Méndez JA; Arias-Montaño JA; Ortega A
    J Neurosci Res; 2001 Nov; 66(4):723-9. PubMed ID: 11746393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glial amplification of synaptic signals.
    Beppu K; Kubo N; Matsui K
    J Physiol; 2021 Apr; 599(7):2085-2102. PubMed ID: 33527421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.