These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26385003)

  • 21. True Lies: Using Proteomics to Assess the Accuracy of Transcriptome-Based Venomics in Centipedes Uncovers False Positives and Reveals Startling Intraspecific Variation in Scolopendra Subspinipes.
    Smith JJ; Undheim EAB
    Toxins (Basel); 2018 Feb; 10(3):. PubMed ID: 29495554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Venom On-a-Chip: A Fast and Efficient Method for Comparative Venomics.
    Zancolli G; Sanz L; Calvete JJ; Wüster W
    Toxins (Basel); 2017 May; 9(6):. PubMed ID: 28555029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Special Issue: Evolutionary Ecology of Venom.
    Arbuckle K
    Toxins (Basel); 2021 Apr; 13(5):. PubMed ID: 33925276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System.
    Harris RJ; Jenner RA
    Toxins (Basel); 2019 Jan; 11(2):. PubMed ID: 30678265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The structural and functional diversification of the Toxicofera reptile venom system.
    Fry BG; Casewell NR; Wüster W; Vidal N; Young B; Jackson TN
    Toxicon; 2012 Sep; 60(4):434-48. PubMed ID: 22446061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals.
    Sunagar K; Moran Y
    PLoS Genet; 2015 Oct; 11(10):e1005596. PubMed ID: 26492532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding and utilising mammalian venom via a platypus venom transcriptome.
    Whittington CM; Koh JM; Warren WC; Papenfuss AT; Torres AM; Kuchel PW; Belov K
    J Proteomics; 2009 Mar; 72(2):155-64. PubMed ID: 19152842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery.
    Robinson SD; Undheim EAB; Ueberheide B; King GF
    Expert Rev Proteomics; 2017 Oct; 14(10):931-939. PubMed ID: 28879805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Snake Venomics Display: An online toolbox for visualization of snake venomics data.
    Dam SH; Friis RUW; Petersen SD; Martos-Esteban A; Laustsen AH
    Toxicon; 2018 Sep; 152():60-64. PubMed ID: 30053438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Venomics: A Mini-Review.
    Wilson D; Daly NL
    High Throughput; 2018 Jul; 7(3):. PubMed ID: 30041430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes.
    Brahma RK; McCleary RJ; Kini RM; Doley R
    Toxicon; 2015 Jan; 93():1-10. PubMed ID: 25448392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.
    Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG
    J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling snake venom complexity with 'omics' approaches: challenges and perspectives.
    Zelanis A; Tashima AK
    Toxicon; 2014 Sep; 87():131-4. PubMed ID: 24878375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tracing monotreme venom evolution in the genomics era.
    Whittington CM; Belov K
    Toxins (Basel); 2014 Apr; 6(4):1260-73. PubMed ID: 24699339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Venomics of Remipede Crustaceans Reveals Novel Peptide Diversity and Illuminates the Venom's Biological Role.
    von Reumont BM; Undheim EAB; Jauss RT; Jenner RA
    Toxins (Basel); 2017 Jul; 9(8):. PubMed ID: 28933727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Tricky Trait: Applying the Fruits of the "Function Debate" in the Philosophy of Biology to the "Venom Debate" in the Science of Toxinology.
    Jackson TN; Fry BG
    Toxins (Basel); 2016 Sep; 8(9):. PubMed ID: 27618098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails.
    Gorson J; Ramrattan G; Verdes A; Wright EM; Kantor Y; Rajaram Srinivasan R; Musunuri R; Packer D; Albano G; Qiu WG; Holford M
    Genome Biol Evol; 2015 May; 7(6):1761-78. PubMed ID: 26025559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uncovering intense protein diversification in a cone snail venom gland using an integrative venomics approach.
    Biass D; Violette A; Hulo N; Lisacek F; Favreau P; Stöcklin R
    J Proteome Res; 2015 Feb; 14(2):628-38. PubMed ID: 25536169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms.
    Walker AA; Robinson SD; Hamilton BF; Undheim EAB; King GF
    Proteomics; 2020 Sep; 20(17-18):e1900324. PubMed ID: 32820606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The evolutionary dynamics of venom toxins made by insects and other animals.
    Walker AA
    Biochem Soc Trans; 2020 Aug; 48(4):1353-1365. PubMed ID: 32756910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.