These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 26385487)
1. Diurnal patterns in Scots pine stem oleoresin pressure in a boreal forest. Rissanen K; Hölttä T; Vanhatalo A; Aalto J; Nikinmaa E; Rita H; Bäck J Plant Cell Environ; 2016 Mar; 39(3):527-38. PubMed ID: 26385487 [TBL] [Abstract][Full Text] [Related]
2. Stem emissions of monoterpenes, acetaldehyde and methanol from Scots pine (Pinus sylvestris L.) affected by tree-water relations and cambial growth. Rissanen K; Vanhatalo A; Salmon Y; Bäck J; Hölttä T Plant Cell Environ; 2020 Jul; 43(7):1751-1765. PubMed ID: 32335919 [TBL] [Abstract][Full Text] [Related]
3. Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst). Paljakka T; Jyske T; Lintunen A; Aaltonen H; Nikinmaa E; Hölttä T Plant Cell Environ; 2017 Oct; 40(10):2160-2173. PubMed ID: 28671720 [TBL] [Abstract][Full Text] [Related]
4. Drought effects on volatile organic compound emissions from Scots pine stems. Rissanen K; Aalto J; Gessler A; Hölttä T; Rigling A; Schaub M; Bäck J Plant Cell Environ; 2022 Jan; 45(1):23-40. PubMed ID: 34723383 [TBL] [Abstract][Full Text] [Related]
5. Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model. Perämäki M; Nikinmaa E; Sevanto S; Ilvesniemi H; Siivola E; Hari P; Vesala T Tree Physiol; 2001 Aug; 21(12-13):889-97. PubMed ID: 11498336 [TBL] [Abstract][Full Text] [Related]
6. Field measurements of ultrasonic acoustic emissions and stem diameter variations. New insight into the relationship between xylem tensions and embolism. Hölttä T; Vesala T; Nikinmaa E; Perämäki M; Siivola E; Mencuccini M Tree Physiol; 2005 Feb; 25(2):237-43. PubMed ID: 15574405 [TBL] [Abstract][Full Text] [Related]
7. Seasonal and annual stem respiration of Scots pine trees under boreal conditions. Zha T; Kellomäki S; Wang KY; Ryyppö A; Niinistö S Ann Bot; 2004 Dec; 94(6):889-96. PubMed ID: 15469943 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown. Nikinmaa E; Sievänen R; Hölttä T Ann Bot; 2014 Sep; 114(4):653-66. PubMed ID: 24854169 [TBL] [Abstract][Full Text] [Related]
9. Stored water use and transpiration in Scots pine: a modeling analysis with ANAFORE. Verbeeck H; Steppe K; Nadezhdina N; Op de Beeck M; Deckmyn G; Meiresonne L; Lemeur R; Cermák J; Ceulemans R; Janssens IA Tree Physiol; 2007 Dec; 27(12):1671-85. PubMed ID: 17938099 [TBL] [Abstract][Full Text] [Related]
10. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit. Paudel I; Naor A; Gal Y; Cohen S Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897 [TBL] [Abstract][Full Text] [Related]
11. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings. Tiiva P; Häikiö E; Kasurinen A Tree Physiol; 2018 Oct; 38(10):1461-1475. PubMed ID: 29648619 [TBL] [Abstract][Full Text] [Related]
12. Does phloem osmolality affect diurnal diameter changes of twigs but not of stems in Scots pine? Lazzarin M; Zweifel R; Anten N; Sterck FJ Tree Physiol; 2019 Feb; 39(2):275-283. PubMed ID: 30371898 [TBL] [Abstract][Full Text] [Related]
13. Limited vertical CO2 transport in stems of mature boreal Pinus sylvestris trees. Tarvainen L; Wallin G; Linder S; Näsholm T; Oren R; Ottosson Löfvenius M; Räntfors M; Tor-Ngern P; Marshall JD Tree Physiol; 2021 Jan; 41(1):63-75. PubMed ID: 32864696 [TBL] [Abstract][Full Text] [Related]
14. A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Voltas J; Camarero JJ; Carulla D; Aguilera M; Ortiz A; Ferrio JP Plant Cell Environ; 2013 Aug; 36(8):1435-48. PubMed ID: 23346991 [TBL] [Abstract][Full Text] [Related]
15. Anatomical-based defense responses of Scots pine (Pinus sylvestris) stems to two fungal pathogens. Nagy NE; Krokene P; Solheim H Tree Physiol; 2006 Feb; 26(2):159-67. PubMed ID: 16356912 [TBL] [Abstract][Full Text] [Related]
16. Enantiomeric monoterpene emissions from natural and damaged Scots pine in a boreal coniferous forest measured using solid-phase microextraction and gas chromatography/mass spectrometry. Yassaa N; Williams J J Chromatogr A; 2007 Feb; 1141(1):138-44. PubMed ID: 17174316 [TBL] [Abstract][Full Text] [Related]
17. Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Eilmann B; Zweifel R; Buchmann N; Fonti P; Rigling A Tree Physiol; 2009 Aug; 29(8):1011-20. PubMed ID: 19483185 [TBL] [Abstract][Full Text] [Related]
18. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland. Ge ZM; Kellomäki S; Peltola H; Zhou X; Wang KY; Väisänen H Tree Physiol; 2011 Mar; 31(3):323-38. PubMed ID: 21436231 [TBL] [Abstract][Full Text] [Related]
19. Photosynthetic refixation varies along the stem and reduces CO2 efflux in mature boreal Pinus sylvestris trees. Tarvainen L; Wallin G; Lim H; Linder S; Oren R; Ottosson Löfvenius M; Räntfors M; Tor-Ngern P; Marshall J Tree Physiol; 2018 Apr; 38(4):558-569. PubMed ID: 29077969 [TBL] [Abstract][Full Text] [Related]