These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26385528)
41. Benzoquinone synthesis-related genes of Tribolium castaneum confer the robust antifungal host defense to the adult beetles through the inhibition of conidial germination on the body surface. Sawada M; Sano T; Hanakawa K; Sirasoonthorn P; Oi T; Miura K J Invertebr Pathol; 2020 Jan; 169():107298. PubMed ID: 31805286 [TBL] [Abstract][Full Text] [Related]
42. Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity. Contreras E; Benito-Jardón M; López-Galiano MJ; Real MD; Rausell C Dev Comp Immunol; 2015 Jun; 50(2):139-45. PubMed ID: 25684675 [TBL] [Abstract][Full Text] [Related]
43. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. Stenbak CR; Ryu JH; Leulier F; Pili-Floury S; Parquet C; Hervé M; Chaput C; Boneca IG; Lee WJ; Lemaitre B; Mengin-Lecreulx D J Immunol; 2004 Dec; 173(12):7339-48. PubMed ID: 15585858 [TBL] [Abstract][Full Text] [Related]
44. Tribolium castaneum Apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity. Contreras E; Rausell C; Real MD J Invertebr Pathol; 2013 Jul; 113(3):209-13. PubMed ID: 23602900 [TBL] [Abstract][Full Text] [Related]
45. Transcription profiling of immune genes during parasite infection in susceptible and resistant strains of the flour beetles (Tribolium castaneum). Zhong D; Wang MH; Pai A; Yan G Exp Parasitol; 2013 May; 134(1):61-7. PubMed ID: 23380036 [TBL] [Abstract][Full Text] [Related]
46. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. Werner T; Borge-Renberg K; Mellroth P; Steiner H; Hultmark D J Biol Chem; 2003 Jul; 278(29):26319-22. PubMed ID: 12777387 [TBL] [Abstract][Full Text] [Related]
47. A C-type lectin (CTL2) mediated both humoral and cellular immunity against bacterial infection in Tribolium castaneum. Wang S; Miao S; Lu Y; Li C; Li B Pestic Biochem Physiol; 2024 May; 201():105852. PubMed ID: 38685211 [TBL] [Abstract][Full Text] [Related]
48. PGRP-SD, an Extracellular Pattern-Recognition Receptor, Enhances Peptidoglycan-Mediated Activation of the Drosophila Imd Pathway. Iatsenko I; Kondo S; Mengin-Lecreulx D; Lemaitre B Immunity; 2016 Nov; 45(5):1013-1023. PubMed ID: 27851910 [TBL] [Abstract][Full Text] [Related]
49. Specificity of oral immune priming in the red flour beetle Futo M; Sell MP; Kutzer MAM; Kurtz J Biol Lett; 2017 Dec; 13(12):. PubMed ID: 29237813 [TBL] [Abstract][Full Text] [Related]
50. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Choe KM; Werner T; Stöven S; Hultmark D; Anderson KV Science; 2002 Apr; 296(5566):359-62. PubMed ID: 11872802 [TBL] [Abstract][Full Text] [Related]
51. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Michel T; Reichhart JM; Hoffmann JA; Royet J Nature; 2001 Dec; 414(6865):756-9. PubMed ID: 11742401 [TBL] [Abstract][Full Text] [Related]
52. The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. Jacobs CG; Spaink HP; van der Zee M Elife; 2014 Dec; 3():. PubMed ID: 25487990 [TBL] [Abstract][Full Text] [Related]
53. Cloning and analysis of peptidoglycan recognition protein-LC and immune deficiency from the diamondback moth, Plutella xylostella. Zhan MY; Yang PJ; Rao XJ Arch Insect Biochem Physiol; 2018 Feb; 97(2):. PubMed ID: 29193237 [TBL] [Abstract][Full Text] [Related]
54. Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Roth O; Sadd BM; Schmid-Hempel P; Kurtz J Proc Biol Sci; 2009 Jan; 276(1654):145-51. PubMed ID: 18796392 [TBL] [Abstract][Full Text] [Related]
55. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Rämet M; Manfruelli P; Pearson A; Mathey-Prevot B; Ezekowitz RA Nature; 2002 Apr; 416(6881):644-8. PubMed ID: 11912489 [TBL] [Abstract][Full Text] [Related]
56. Insights into the different functions of multiple peptidoglycan recognition proteins in the immune response against bacteria in the mosquito, Armigeres subalbatus. Wang S; Beerntsen BT Insect Biochem Mol Biol; 2013 Jun; 43(6):533-43. PubMed ID: 23541606 [TBL] [Abstract][Full Text] [Related]
57. Peptidoglycan recognition protein of Chlamys farreri (CfPGRP-S1) mediates immune defenses against bacterial infection. Yang J; Wang W; Wei X; Qiu L; Wang L; Zhang H; Song L Dev Comp Immunol; 2010 Dec; 34(12):1300-7. PubMed ID: 20713083 [TBL] [Abstract][Full Text] [Related]
58. Molecular and functional characterization of ApPGRP from Anatolica polita in the immune response to Escherichia coli. Mao X; Xu X; Yang X; Li Z; Yang J; Liu Z Gene; 2019 Mar; 690():21-29. PubMed ID: 30593914 [TBL] [Abstract][Full Text] [Related]
59. Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein. Zhang SM; Zeng Y; Loker ES Immunogenetics; 2007 Nov; 59(11):883-98. PubMed ID: 17805526 [TBL] [Abstract][Full Text] [Related]
60. Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae. Greenwood JM; Milutinović B; Peuß R; Behrens S; Esser D; Rosenstiel P; Schulenburg H; Kurtz J BMC Genomics; 2017 Apr; 18(1):329. PubMed ID: 28446171 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]