These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 26385547)
1. Metabolic responses to Lactobacillus plantarum contamination or bacteriophage treatment in Saccharomyces cerevisiae using a GC-MS-based metabolomics approach. Cui FX; Zhang RM; Liu HQ; Wang YF; Li H World J Microbiol Biotechnol; 2015 Dec; 31(12):2003-13. PubMed ID: 26385547 [TBL] [Abstract][Full Text] [Related]
2. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. Li H; Ma ML; Luo S; Zhang RM; Han P; Hu W Int J Biochem Cell Biol; 2012 Jul; 44(7):1087-96. PubMed ID: 22504284 [TBL] [Abstract][Full Text] [Related]
3. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation. Dong SJ; Lin XH; Li H Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142 [TBL] [Abstract][Full Text] [Related]
4. Effects of Lactobacillus plantarum on the ethanol tolerance of Saccharomyces cerevisiae. He X; Liu B; Xu Y; Chen Z; Li H Appl Microbiol Biotechnol; 2021 Mar; 105(6):2597-2611. PubMed ID: 33646374 [TBL] [Abstract][Full Text] [Related]
5. Characterization of γ-aminobutyric acid (GABA)-producing Saccharomyces cerevisiae and coculture with Lactobacillus plantarum for mulberry beverage brewing. Zhang Q; Sun Q; Tan X; Zhang S; Zeng L; Tang J; Xiang W J Biosci Bioeng; 2020 Apr; 129(4):447-453. PubMed ID: 31678068 [TBL] [Abstract][Full Text] [Related]
6. Using drug-loaded pH-responsive poly(4-vinylpyridine) microspheres as a new strategy for intelligent controlling of Lactobacillus plantarum contamination in bioethanol fermentation. Li M; Hu HW; Chen Z; Zhang YX; Li H World J Microbiol Biotechnol; 2018 Sep; 34(10):146. PubMed ID: 30206729 [TBL] [Abstract][Full Text] [Related]
7. Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria. Lee JE; Hwang GS; Lee CH; Hong YS J Agric Food Chem; 2009 Nov; 57(22):10772-83. PubMed ID: 19919120 [TBL] [Abstract][Full Text] [Related]
8. Yeasts and lactic acid bacteria mixed-specie biofilm formation is a promising cell immobilization technology for ethanol fermentation. Abe A; Furukawa S; Watanabe S; Morinaga Y Appl Biochem Biotechnol; 2013 Sep; 171(1):72-9. PubMed ID: 23817789 [TBL] [Abstract][Full Text] [Related]
9. GC-MS-based metabolomics study of the responses to arachidonic acid in Blakeslea trispora. Hu X; Li H; Tang P; Sun J; Yuan Q; Li C Fungal Genet Biol; 2013 Aug; 57():33-41. PubMed ID: 23769871 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Lactobacillus plantarum and Saccharomyces cerevisiae in the Presence of Bifenthrin. Đorđević TM; Đurović-Pejčev RD Curr Microbiol; 2016 Jun; 72(6):680-91. PubMed ID: 26868256 [TBL] [Abstract][Full Text] [Related]
11. Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash. Narendranath NV; Power R J Ind Microbiol Biotechnol; 2004 Dec; 31(12):581-4. PubMed ID: 15599666 [TBL] [Abstract][Full Text] [Related]
12. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae. Peng J; Zhang L; Gu ZH; Ding ZY; Shi GY Lett Appl Microbiol; 2012 Aug; 55(2):128-34. PubMed ID: 22691226 [TBL] [Abstract][Full Text] [Related]
13. Uses of miscanthus press juice within a green biorefinery platform. Boakye-Boaten NA; Xiu S; Shahbazi A; Wang L; Li R; Schimmel K Bioresour Technol; 2016 May; 207():285-92. PubMed ID: 26896712 [TBL] [Abstract][Full Text] [Related]
14. Reduction of invasive bacteria in ethanol fermentations using bacteriophages. Worley-Morse TO; Deshusses MA; Gunsch CK Biotechnol Bioeng; 2015 Aug; 112(8):1544-53. PubMed ID: 25788328 [TBL] [Abstract][Full Text] [Related]
15. A metabolomics and proteomics study of the Lactobacillus plantarum in the grass carp fermentation. Ming T; Han J; Li Y; Lu C; Qiu D; Li Y; Zhou J; Su X BMC Microbiol; 2018 Dec; 18(1):216. PubMed ID: 30563460 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis. Cheng X; Huang L; Li KT World J Microbiol Biotechnol; 2019 Apr; 35(5):68. PubMed ID: 31011829 [TBL] [Abstract][Full Text] [Related]
17. Effects of protectant and rehydration conditions on the survival rate and malolactic fermentation efficiency of freeze-dried Lactobacillus plantarum JH287. Lee SB; Kim DH; Park HD Appl Microbiol Biotechnol; 2016 Sep; 100(18):7853-63. PubMed ID: 27079573 [TBL] [Abstract][Full Text] [Related]
18. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling. Kim S; Kim J; Song JH; Jung YH; Choi IS; Choi W; Park YC; Seo JH; Kim KH Biotechnol J; 2016 Sep; 11(9):1221-9. PubMed ID: 27313052 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the complex nexus: Interplay of volatile compounds, free amino acids, and metabolites in oat solid state fermentation. Sun J; Al-Ansi W; Xue L; Fan M; Li Y; Qian H; Fan L; Wang L J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Jul; 1241():124168. PubMed ID: 38815355 [TBL] [Abstract][Full Text] [Related]