These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 26385843)
1. Pressure-induced structural transition of mature HIV-1 protease from a combined NMR/MD simulation approach. Roche J; Louis JM; Bax A; Best RB Proteins; 2015 Dec; 83(12):2117-23. PubMed ID: 26385843 [TBL] [Abstract][Full Text] [Related]
2. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights. Chetty S; Bhakat S; Martin AJ; Soliman ME J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669 [TBL] [Abstract][Full Text] [Related]
3. Conformation of inhibitor-free HIV-1 protease derived from NMR spectroscopy in a weakly oriented solution. Roche J; Louis JM; Bax A Chembiochem; 2015 Jan; 16(2):214-8. PubMed ID: 25470009 [TBL] [Abstract][Full Text] [Related]
4. Drug pressure selected mutations in HIV-1 protease alter flap conformations. Galiano L; Ding F; Veloro AM; Blackburn ME; Simmerling C; Fanucci GE J Am Chem Soc; 2009 Jan; 131(2):430-1. PubMed ID: 19140783 [TBL] [Abstract][Full Text] [Related]
5. NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations. Ishima R; Kurt Yilmaz N; Schiffer CA J Biomol NMR; 2019 Jul; 73(6-7):365-374. PubMed ID: 31243634 [TBL] [Abstract][Full Text] [Related]
6. Evolution under Drug Pressure Remodels the Folding Free-Energy Landscape of Mature HIV-1 Protease. Louis JM; Roche J J Mol Biol; 2016 Jul; 428(13):2780-92. PubMed ID: 27170547 [TBL] [Abstract][Full Text] [Related]
7. Conformational variation of an extreme drug resistant mutant of HIV protease. Shen CH; Chang YC; Agniswamy J; Harrison RW; Weber IT J Mol Graph Model; 2015 Nov; 62():87-96. PubMed ID: 26397743 [TBL] [Abstract][Full Text] [Related]
8. Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function. Ishima R; Freedberg DI; Wang YX; Louis JM; Torchia DA Structure; 1999 Sep; 7(9):1047-55. PubMed ID: 10508781 [TBL] [Abstract][Full Text] [Related]
9. Flap-site Fragment Restores Back Wild-type Behaviour in Resistant Form of HIV Protease. Luchi A; Angelina E; Bogado L; Forli S; Olson A; Peruchena N Mol Inform; 2018 Dec; 37(12):e1800053. PubMed ID: 30051611 [TBL] [Abstract][Full Text] [Related]
10. Substituted Bis-THF Protease Inhibitors with Improved Potency against Highly Resistant Mature HIV-1 Protease PR20. Agniswamy J; Louis JM; Shen CH; Yashchuk S; Ghosh AK; Weber IT J Med Chem; 2015 Jun; 58(12):5088-95. PubMed ID: 26010498 [TBL] [Abstract][Full Text] [Related]
11. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. Kar P; Lipowsky R; Knecht V J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718 [TBL] [Abstract][Full Text] [Related]
12. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G; Steinbrecher T; Papadopoulos MG J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142 [TBL] [Abstract][Full Text] [Related]
13. Binding of Clinical Inhibitors to a Model Precursor of a Rationally Selected Multidrug Resistant HIV-1 Protease Is Significantly Weaker Than That to the Released Mature Enzyme. Park JH; Sayer JM; Aniana A; Yu X; Weber IT; Harrison RW; Louis JM Biochemistry; 2016 Apr; 55(16):2390-400. PubMed ID: 27039930 [TBL] [Abstract][Full Text] [Related]
14. Exploring molecular mechanism of allosteric inhibitor to relieve drug resistance of multiple mutations in HIV-1 protease by enhanced conformational sampling. Chen J; Peng C; Wang J; Zhu W Proteins; 2018 Dec; 86(12):1294-1305. PubMed ID: 30260044 [TBL] [Abstract][Full Text] [Related]
15. Probing Structural Changes among Analogous Inhibitor-Bound Forms of HIV-1 Protease and a Drug-Resistant Mutant in Solution by Nuclear Magnetic Resonance. Khan SN; Persons JD; Paulsen JL; Guerrero M; Schiffer CA; Kurt-Yilmaz N; Ishima R Biochemistry; 2018 Mar; 57(10):1652-1662. PubMed ID: 29457713 [TBL] [Abstract][Full Text] [Related]
16. Solution structure of HIV-1 protease flaps probed by comparison of molecular dynamics simulation ensembles and EPR experiments. Ding F; Layten M; Simmerling C J Am Chem Soc; 2008 Jun; 130(23):7184-5. PubMed ID: 18479129 [TBL] [Abstract][Full Text] [Related]
17. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. Hornak V; Okur A; Rizzo RC; Simmerling C J Am Chem Soc; 2006 Mar; 128(9):2812-3. PubMed ID: 16506755 [TBL] [Abstract][Full Text] [Related]
18. Inhibitor-induced conformational shifts and ligand-exchange dynamics for HIV-1 protease measured by pulsed EPR and NMR spectroscopy. Huang X; de Vera IM; Veloro AM; Blackburn ME; Kear JL; Carter JD; Rocca JR; Simmerling C; Dunn BM; Fanucci GE J Phys Chem B; 2012 Dec; 116(49):14235-44. PubMed ID: 23167829 [TBL] [Abstract][Full Text] [Related]
19. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism. Meher BR; Wang Y J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662 [TBL] [Abstract][Full Text] [Related]
20. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study. Maphumulo SI; Halder AK; Govender T; Maseko S; Maguire GEM; Honarparvar B; Kruger HG Chem Biol Drug Des; 2018 Nov; 92(5):1899-1913. PubMed ID: 30003668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]