BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 26386178)

  • 1. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity.
    Behl M; Hsieh JH; Shafer TJ; Mundy WR; Rice JR; Boyd WA; Freedman JH; Hunter ES; Jarema KA; Padilla S; Tice RR
    Neurotoxicol Teratol; 2015; 52(Pt B):181-93. PubMed ID: 26386178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance.
    Alzualde A; Behl M; Sipes NS; Hsieh JH; Alday A; Tice RR; Paules RS; Muriana A; Quevedo C
    Neurotoxicol Teratol; 2018; 70():40-50. PubMed ID: 30312655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish.
    Jarema KA; Hunter DL; Shaffer RM; Behl M; Padilla S
    Neurotoxicol Teratol; 2015; 52(Pt B):194-209. PubMed ID: 26348672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebrafish.
    Oliveri AN; Bailey JM; Levin ED
    Neurotoxicol Teratol; 2015; 52(Pt B):220-7. PubMed ID: 26344674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organophosphate Flame Retardants Act as Endocrine-Disrupting Chemicals in MA-10 Mouse Tumor Leydig Cells.
    Schang G; Robaire B; Hales BF
    Toxicol Sci; 2016 Apr; 150(2):499-509. PubMed ID: 26794138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental Exposure to Low Concentrations of Organophosphate Flame Retardants Causes Life-Long Behavioral Alterations in Zebrafish.
    Glazer L; Hawkey AB; Wells CN; Drastal M; Odamah KA; Behl M; Levin ED
    Toxicol Sci; 2018 Oct; 165(2):487-498. PubMed ID: 29982741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental circulatory failure caused by metabolites of organophosphorus flame retardants in zebrafish, Danio rerio.
    Lee JS; Morita Y; Kawai YK; Covaci A; Kubota A
    Chemosphere; 2020 May; 246():125738. PubMed ID: 31918085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editor's Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditis elegans.
    Behl M; Rice JR; Smith MV; Co CA; Bridge MF; Hsieh JH; Freedman JH; Boyd WA
    Toxicol Sci; 2016 Dec; 154(2):241-252. PubMed ID: 27566445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced morphological - behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants.
    Noyes PD; Haggard DE; Gonnerman GD; Tanguay RL
    Toxicol Sci; 2015 May; 145(1):177-95. PubMed ID: 25711236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model.
    Hogberg HT; de Cássia da Silveira E Sá R; Kleensang A; Bouhifd M; Cemiloglu Ulker O; Smirnova L; Behl M; Maertens A; Zhao L; Hartung T
    Arch Toxicol; 2021 Jan; 95(1):207-228. PubMed ID: 33078273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity.
    Sun L; Xu W; Peng T; Chen H; Ren L; Tan H; Xiao D; Qian H; Fu Z
    Neurotoxicol Teratol; 2016; 55():16-22. PubMed ID: 27018022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brominated and organophosphate flame retardants target different neurodevelopmental stages, characterized with embryonic neural stem cells and neuronotypic PC12 cells.
    Slotkin TA; Skavicus S; Stapleton HM; Seidler FJ
    Toxicology; 2017 Sep; 390():32-42. PubMed ID: 28851516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OPFRs and BFRs induced A549 cell apoptosis by caspase-dependent mitochondrial pathway.
    Yu X; Yin H; Peng H; Lu G; Liu Z; Dang Z
    Chemosphere; 2019 Apr; 221():693-702. PubMed ID: 30669111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis.
    van der Veen I; de Boer J
    Chemosphere; 2012 Aug; 88(10):1119-53. PubMed ID: 22537891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trophic transfer of organophosphorus flame retardants in a lake food web.
    Zhao H; Zhao F; Liu J; Zhang S; Mu D; An L; Wan Y; Hu J
    Environ Pollut; 2018 Nov; 242(Pt B):1887-1893. PubMed ID: 30072223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotoxicological and thyroid evaluations of rats developmentally exposed to tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) and tris(2-chloro-2-ethyl)phosphate (TCEP).
    Moser VC; Phillips PM; Hedge JM; McDaniel KL
    Neurotoxicol Teratol; 2015; 52(Pt B):236-47. PubMed ID: 26300399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: by disturbing expression of the transcriptional regulators.
    Du Z; Wang G; Gao S; Wang Z
    Aquat Toxicol; 2015 Apr; 161():25-32. PubMed ID: 25661707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In ovo exposure to organophosphorous flame retardants: survival, development, neurochemical, and behavioral changes in white leghorn chickens.
    Bradley M; Rutkiewicz J; Mittal K; Fernie K; Basu N
    Neurotoxicol Teratol; 2015; 52(Pt B):228-35. PubMed ID: 26277804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening for neurotoxic potential of 15 flame retardants using freshwater planarians.
    Zhang S; Ireland D; Sipes NS; Behl M; Collins ES
    Neurotoxicol Teratol; 2019; 73():54-66. PubMed ID: 30943442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurodevelopmental toxicity assessment of flame retardants using a human DNT in vitro testing battery.
    Klose J; Pahl M; Bartmann K; Bendt F; Blum J; Dolde X; Förster N; Holzer AK; Hübenthal U; Keßel HE; Koch K; Masjosthusmann S; Schneider S; Stürzl LC; Woeste S; Rossi A; Covaci A; Behl M; Leist M; Tigges J; Fritsche E
    Cell Biol Toxicol; 2022 Oct; 38(5):781-807. PubMed ID: 33969458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.