BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 26386250)

  • 1. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel.
    Yang J; Jiang H; Yeh CT; Yu J; Jeddeloh JA; Nettleton D; Schnable PS
    Plant J; 2015 Nov; 84(3):587-96. PubMed ID: 26386250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population.
    Bian Y; Yang Q; Balint-Kurti PJ; Wisser RJ; Holland JB
    BMC Genomics; 2014 Dec; 15(1):1068. PubMed ID: 25475173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS.
    Lin HY; Liu Q; Li X; Yang J; Liu S; Huang Y; Scanlon MJ; Nettleton D; Schnable PS
    Genome Biol; 2017 Oct; 18(1):192. PubMed ID: 29041960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-plant GWAS coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height candidate SNPs.
    Gyawali A; Shrestha V; Guill KE; Flint-Garcia S; Beissinger TM
    BMC Plant Biol; 2019 Oct; 19(1):412. PubMed ID: 31590656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies.
    Negro SS; Millet EJ; Madur D; Bauland C; Combes V; Welcker C; Tardieu F; Charcosset A; Nicolas SD
    BMC Plant Biol; 2019 Jul; 19(1):318. PubMed ID: 31311506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-Wide Association Supplements Genome-Wide Association in
    Kremling KAG; Diepenbrock CH; Gore MA; Buckler ES; Bandillo NB
    G3 (Bethesda); 2019 Sep; 9(9):3023-3033. PubMed ID: 31337639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae).
    Zhang D; Li J; Compton RO; Robertson J; Goff VH; Epps E; Kong W; Kim C; Paterson AH
    G3 (Bethesda); 2015 Mar; 5(6):1117-28. PubMed ID: 25834216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and validation of genomic regions influencing kernel zinc and iron in maize.
    Hindu V; Palacios-Rojas N; Babu R; Suwarno WB; Rashid Z; Usha R; Saykhedkar GR; Nair SK
    Theor Appl Genet; 2018 Jul; 131(7):1443-1457. PubMed ID: 29574570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize.
    Li C; Li Y; Bradbury PJ; Wu X; Shi Y; Song Y; Zhang D; Rodgers-Melnick E; Buckler ES; Zhang Z; Li Y; Wang T
    BMC Biol; 2015 Sep; 13():78. PubMed ID: 26390990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize.
    Cui Z; Luo J; Qi C; Ruan Y; Li J; Zhang A; Yang X; He Y
    BMC Genomics; 2016 Nov; 17(1):946. PubMed ID: 27871222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development.
    Pang J; Fu J; Zong N; Wang J; Song D; Zhang X; He C; Fang T; Zhang H; Fan Y; Wang G; Zhao J
    Plant J; 2019 Apr; 98(1):19-32. PubMed ID: 30548709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical Comparisons of Different Statistical Models To Identify and Validate Kernel Row Number-Associated Variants from Structured Multi-parent Mapping Populations of Maize.
    Yang J; Yeh CE; Ramamurthy RK; Qi X; Fernando RL; Dekkers JCM; Garrick DJ; Nettleton D; Schnable PS
    G3 (Bethesda); 2018 Nov; 8(11):3567-3575. PubMed ID: 30213868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean.
    Sonah H; O'Donoughue L; Cober E; Rajcan I; Belzile F
    Plant Biotechnol J; 2015 Feb; 13(2):211-21. PubMed ID: 25213593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide association analysis of seedling root development in maize (Zea mays L.).
    Pace J; Gardner C; Romay C; Ganapathysubramanian B; Lübberstedt T
    BMC Genomics; 2015 Feb; 16(1):47. PubMed ID: 25652714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distant eQTLs and Non-coding Sequences Play Critical Roles in Regulating Gene Expression and Quantitative Trait Variation in Maize.
    Liu H; Luo X; Niu L; Xiao Y; Chen L; Liu J; Wang X; Jin M; Li W; Zhang Q; Yan J
    Mol Plant; 2017 Mar; 10(3):414-426. PubMed ID: 27381443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disentangling group specific QTL allele effects from genetic background epistasis using admixed individuals in GWAS: An application to maize flowering.
    Rio S; Mary-Huard T; Moreau L; Bauland C; Palaffre C; Madur D; Combes V; Charcosset A
    PLoS Genet; 2020 Mar; 16(3):e1008241. PubMed ID: 32130208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetics and consequences of crop domestication.
    Flint-Garcia SA
    J Agric Food Chem; 2013 Sep; 61(35):8267-76. PubMed ID: 23718780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Trait Genome-Wide Association Studies Reveal Loci Associated with Maize Inflorescence and Leaf Architecture.
    Rice BR; Fernandes SB; Lipka AE
    Plant Cell Physiol; 2020 Aug; 61(8):1427-1437. PubMed ID: 32186727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COMPILE: a GWAS computational pipeline for gene discovery in complex genomes.
    Hill MJ; Penning BW; McCann MC; Carpita NC
    BMC Plant Biol; 2022 Jul; 22(1):315. PubMed ID: 35778686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomewide association study for economic traits in the large yellow croaker with different numbers of extreme phenotypes.
    Wan L; Dong L; Xiao S; Han Z; Wang X; Wang Z
    J Genet; 2018 Sep; 97(4):887-895. PubMed ID: 30262700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.