BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26386430)

  • 1. Complex interactions among nutrients, chlorophyll-a, and microcystins in three stormwater wet detention basins with floating treatment wetlands.
    Hartshorn N; Marimon Z; Xuan Z; Cormier J; Chang NB; Wanielista M
    Chemosphere; 2016 Feb; 144():408-19. PubMed ID: 26386430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds.
    Wang CY; Sample DJ
    J Environ Manage; 2014 May; 137():23-35. PubMed ID: 24594756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast eutrophication assessment for stormwater wet detention ponds via fuzzy probit regression analysis under uncertainty.
    Tahsin S; Chang NB
    Environ Monit Assess; 2016 Feb; 188(2):77. PubMed ID: 26733470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds.
    Wang CY; Sample DJ; Bell C
    Sci Total Environ; 2014 Nov; 499():384-93. PubMed ID: 25214393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing floating treatment wetland and retention pond design through random forest: A meta-analysis of influential variables.
    Tirpak RA; Tondera K; Tharp R; Borne KE; Schwammberger P; Ruppelt J; Winston RJ
    J Environ Manage; 2022 Jun; 312():114909. PubMed ID: 35305357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrologic processes regulate nutrient retention in stormwater detention ponds.
    Janke BD; Finlay JC; Taguchi VJ; Gulliver JS
    Sci Total Environ; 2022 Jun; 823():153722. PubMed ID: 35150669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek.
    DeLorenzo ME; Thompson B; Cooper E; Moore J; Fulton MH
    Environ Monit Assess; 2012 Jan; 184(1):343-59. PubMed ID: 21409361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet season nitrogen export from a residential stormwater pond.
    Jani J; Lusk MG; Yang YY; Toor GS
    PLoS One; 2020; 15(4):e0230908. PubMed ID: 32236119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid plant responses following relocation of a constructed floating wetland from a construction site into an urban stormwater retention pond.
    Schwammberger PF; Yule CM; Tindale NW
    Sci Total Environ; 2020 Jan; 699():134372. PubMed ID: 31683220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.
    Wilson AE; Chislock MF; Yang Z; Barros MUG; Roberts JF
    Environ Monit Assess; 2018 Mar; 190(4):247. PubMed ID: 29574498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds.
    Istenič D; Arias CA; Vollertsen J; Nielsen AH; Wium-Andersen T; Hvitved-Jacobsen T; Brix H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(10):1466-77. PubMed ID: 22571535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury methylation in stormwater retention ponds at different stages in the management lifecycle.
    Strickman RJ; Mitchell CPJ
    Environ Sci Process Impacts; 2018 Apr; 20(4):595-606. PubMed ID: 29376168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal.
    Sharma R; Vymazal J; Malaviya P
    Sci Total Environ; 2021 Jul; 777():146044. PubMed ID: 33689897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals, PAHs and toxicity in stormwater wet detention ponds.
    Wium-Andersen T; Nielsen AH; Hvitved-Jakobsen T; Vollertsen J
    Water Sci Technol; 2011; 64(2):503-11. PubMed ID: 22097026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.).
    Lu Q; He ZL; Graetz DA; Stoffella PJ; Yang X
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):84-96. PubMed ID: 19104863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond best management practices: pelagic biogeochemical dynamics in urban stormwater ponds.
    Williams CJ; Frost PC; Xenopoulos MA
    Ecol Appl; 2013 Sep; 23(6):1384-95. PubMed ID: 24147410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing an ecosystem model of a floating wetland for water quality improvement on a stormwater pond.
    McAndrew B; Ahn C
    J Environ Manage; 2017 Nov; 202(Pt 1):198-207. PubMed ID: 28735204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the treatment efficiency of an urban stormwater pond and its impact on the natural downstream watercourse.
    Ivanovsky A; Belles A; Criquet J; Dumoulin D; Noble P; Alary C; Billon G
    J Environ Manage; 2018 Nov; 226():120-130. PubMed ID: 30114571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urban stormwater treatment by a constructed wetland: Seasonality impacts on hydraulic efficiency, physico-chemical behavior and heavy metal occurrence.
    Walaszek M; Bois P; Laurent J; Lenormand E; Wanko A
    Sci Total Environ; 2018 Oct; 637-638():443-454. PubMed ID: 29754079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Best management practices for nutrient and sediment retention in urban stormwater runoff.
    Hogan DM; Walbridge MR
    J Environ Qual; 2007; 36(2):386-95. PubMed ID: 17255626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.