These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26386430)

  • 1. Complex interactions among nutrients, chlorophyll-a, and microcystins in three stormwater wet detention basins with floating treatment wetlands.
    Hartshorn N; Marimon Z; Xuan Z; Cormier J; Chang NB; Wanielista M
    Chemosphere; 2016 Feb; 144():408-19. PubMed ID: 26386430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds.
    Wang CY; Sample DJ
    J Environ Manage; 2014 May; 137():23-35. PubMed ID: 24594756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast eutrophication assessment for stormwater wet detention ponds via fuzzy probit regression analysis under uncertainty.
    Tahsin S; Chang NB
    Environ Monit Assess; 2016 Feb; 188(2):77. PubMed ID: 26733470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds.
    Wang CY; Sample DJ; Bell C
    Sci Total Environ; 2014 Nov; 499():384-93. PubMed ID: 25214393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing floating treatment wetland and retention pond design through random forest: A meta-analysis of influential variables.
    Tirpak RA; Tondera K; Tharp R; Borne KE; Schwammberger P; Ruppelt J; Winston RJ
    J Environ Manage; 2022 Jun; 312():114909. PubMed ID: 35305357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrologic processes regulate nutrient retention in stormwater detention ponds.
    Janke BD; Finlay JC; Taguchi VJ; Gulliver JS
    Sci Total Environ; 2022 Jun; 823():153722. PubMed ID: 35150669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek.
    DeLorenzo ME; Thompson B; Cooper E; Moore J; Fulton MH
    Environ Monit Assess; 2012 Jan; 184(1):343-59. PubMed ID: 21409361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet season nitrogen export from a residential stormwater pond.
    Jani J; Lusk MG; Yang YY; Toor GS
    PLoS One; 2020; 15(4):e0230908. PubMed ID: 32236119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid plant responses following relocation of a constructed floating wetland from a construction site into an urban stormwater retention pond.
    Schwammberger PF; Yule CM; Tindale NW
    Sci Total Environ; 2020 Jan; 699():134372. PubMed ID: 31683220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.
    Wilson AE; Chislock MF; Yang Z; Barros MUG; Roberts JF
    Environ Monit Assess; 2018 Mar; 190(4):247. PubMed ID: 29574498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds.
    Istenič D; Arias CA; Vollertsen J; Nielsen AH; Wium-Andersen T; Hvitved-Jacobsen T; Brix H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(10):1466-77. PubMed ID: 22571535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury methylation in stormwater retention ponds at different stages in the management lifecycle.
    Strickman RJ; Mitchell CPJ
    Environ Sci Process Impacts; 2018 Apr; 20(4):595-606. PubMed ID: 29376168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal.
    Sharma R; Vymazal J; Malaviya P
    Sci Total Environ; 2021 Jul; 777():146044. PubMed ID: 33689897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals, PAHs and toxicity in stormwater wet detention ponds.
    Wium-Andersen T; Nielsen AH; Hvitved-Jakobsen T; Vollertsen J
    Water Sci Technol; 2011; 64(2):503-11. PubMed ID: 22097026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.).
    Lu Q; He ZL; Graetz DA; Stoffella PJ; Yang X
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):84-96. PubMed ID: 19104863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond best management practices: pelagic biogeochemical dynamics in urban stormwater ponds.
    Williams CJ; Frost PC; Xenopoulos MA
    Ecol Appl; 2013 Sep; 23(6):1384-95. PubMed ID: 24147410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing an ecosystem model of a floating wetland for water quality improvement on a stormwater pond.
    McAndrew B; Ahn C
    J Environ Manage; 2017 Nov; 202(Pt 1):198-207. PubMed ID: 28735204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the treatment efficiency of an urban stormwater pond and its impact on the natural downstream watercourse.
    Ivanovsky A; Belles A; Criquet J; Dumoulin D; Noble P; Alary C; Billon G
    J Environ Manage; 2018 Nov; 226():120-130. PubMed ID: 30114571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urban stormwater treatment by a constructed wetland: Seasonality impacts on hydraulic efficiency, physico-chemical behavior and heavy metal occurrence.
    Walaszek M; Bois P; Laurent J; Lenormand E; Wanko A
    Sci Total Environ; 2018 Oct; 637-638():443-454. PubMed ID: 29754079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Best management practices for nutrient and sediment retention in urban stormwater runoff.
    Hogan DM; Walbridge MR
    J Environ Qual; 2007; 36(2):386-95. PubMed ID: 17255626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.