These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26386567)

  • 1. Optimization of magnetophoretic-guided drug delivery to the olfactory region in a human nose model.
    Xi J; Zhang Z; Si XA; Yang J; Deng W
    Biomech Model Mechanobiol; 2016 Aug; 15(4):877-91. PubMed ID: 26386567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers.
    Xi J; Zhang Z; Si XA
    Int J Nanomedicine; 2015; 10():1211-22. PubMed ID: 25709443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Testing of Electric-Guided Delivery of Charged Particles to the Olfactory Region: Experimental and Numerical Studies.
    Xi J; Yuan JE; Alshaiba M; Cheng D; Firlit Z; Johnson A; Nolan A; Su WC
    Curr Drug Deliv; 2016; 13(2):265-74. PubMed ID: 26362143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols.
    Si XA; Xi J
    J Vis Exp; 2016 May; (111):. PubMed ID: 27285852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Comparison of Nasal Aerosol Administration Systems for Efficient Nose-to-Brain Drug Delivery.
    Dong J; Shang Y; Inthavong K; Chan HK; Tu J
    Pharm Res; 2017 Dec; 35(1):5. PubMed ID: 29288465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis.
    Xi J; Yuan JE; Si XA; Hasbany J
    Int J Nanomedicine; 2015; 10():4847-61. PubMed ID: 26257521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nasal and Olfactory Deposition with Normal and Bidirectional Intranasal Delivery Techniques: In Vitro Tests and Numerical Simulations.
    Xi J; Wang Z; Nevorski D; White T; Zhou Y
    J Aerosol Med Pulm Drug Deliv; 2017 Apr; 30(2):118-131. PubMed ID: 27977306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretic particle guidance significantly enhances olfactory drug delivery: a feasibility study.
    Xi J; Si XA; Gaide R
    PLoS One; 2014; 9(1):e86593. PubMed ID: 24497957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olfactory drug delivery with intranasal sprays after nasal midvault reconstruction.
    Chiang H; Martin HL; Sicard RM; Frank-Ito DO
    Int J Pharm; 2023 Sep; 644():123341. PubMed ID: 37611854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling.
    Xi J; Wang Z; Si XA; Zhou Y
    Eur J Pharm Sci; 2018 Jun; 118():113-123. PubMed ID: 29597042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter characteristics in intranasal drug delivery: A key to targeting medications to the olfactory airspace.
    Sicard RM; Frank-Ito DO
    Clin Biomech (Bristol, Avon); 2024 Apr; 114():106231. PubMed ID: 38507865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals.
    Engelhardt L; Röhm M; Mavoungou C; Schindowski K; Schafmeister A; Simon U
    Pharm Res; 2016 Jun; 33(6):1337-50. PubMed ID: 26887679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioning of dispersed nanoparticles in a realistic nasal passage for targeted drug delivery.
    Dong J; Shang Y; Inthavong K; Chan HK; Tu J
    Int J Pharm; 2018 May; 543(1-2):83-95. PubMed ID: 29597035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model.
    Schroeter JD; Kimbell JS; Asgharian B
    J Aerosol Med; 2006; 19(3):301-13. PubMed ID: 17034306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of release position and ventilation effects on olfactory aerosol drug delivery.
    Si XA; Xi J; Kim J; Zhou Y; Zhong H
    Respir Physiol Neurobiol; 2013 Mar; 186(1):22-32. PubMed ID: 23313127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization and Quantification of Nasal and Olfactory Deposition in a Sectional Adult Nasal Airway Cast.
    Xi J; Yuan JE; Zhang Y; Nevorski D; Wang Z; Zhou Y
    Pharm Res; 2016 Jun; 33(6):1527-41. PubMed ID: 26943943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective nose-to-brain drug delivery using a combination system targeting the olfactory region in monkeys.
    Sasaki K; Fukakusa S; Torikai Y; Suzuki C; Sonohata I; Kawahata T; Magata Y; Kawai K; Haruta S
    J Control Release; 2023 Jul; 359():384-399. PubMed ID: 37315691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet.
    Manshadi MKD; Saadat M; Mohammadi M; Kamali R; Shamsi M; Naseh M; Sanati-Nezhad A
    Drug Deliv; 2019 Dec; 26(1):120-128. PubMed ID: 30798633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose.
    Zhao K; Dalton P; Yang GC; Scherer PW
    Chem Senses; 2006 Feb; 31(2):107-18. PubMed ID: 16354744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nasal dilators on nasal structures, sniffing strategies, and olfactory ability.
    Hornung DE; Smith DJ; Kurtz DB; White T; Leopold DA
    Rhinology; 2001 Jun; 39(2):84-7. PubMed ID: 11486444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.