BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26386770)

  • 1. A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants.
    Alvarino T; Suárez S; Garrido M; Lema JM; Omil F
    Chemosphere; 2016 Feb; 144():452-8. PubMed ID: 26386770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.
    Harb M; Wei CH; Wang N; Amy G; Hong PY
    Bioresour Technol; 2016 Oct; 218():882-91. PubMed ID: 27441825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity.
    Shi X; Lefebvre O; Ng KK; Ng HY
    Bioresour Technol; 2014 Feb; 153():79-86. PubMed ID: 24355500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behaviour of the main nonsteroidal anti-inflammatory drugs in a membrane bioreactor treating urban wastewater at high hydraulic- and sludge-retention time.
    González-Pérez DM; Pérez JI; Gómez MA
    J Hazard Mater; 2017 Aug; 336():128-138. PubMed ID: 28494300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An innovative wastewater treatment technology based on UASB and IFAS for cost-efficient macro and micropollutant removal.
    Arias A; Alvarino T; Allegue T; Suárez S; Garrido JM; Omil F
    J Hazard Mater; 2018 Oct; 359():113-120. PubMed ID: 30014906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors.
    Alvarino T; Suarez S; Lema JM; Omil F
    J Hazard Mater; 2014 Aug; 278():506-13. PubMed ID: 25010455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants.
    Alvarino T; Komesli O; Suarez S; Lema JM; Omil F
    J Hazard Mater; 2016 May; 308():29-36. PubMed ID: 26808240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic-aerobic membrane bioreactor (MBR).
    Phan HV; Hai FI; Kang J; Dam HK; Zhang R; Price WE; Broeckmann A; Nghiem LD
    Bioresour Technol; 2014 Aug; 165():96-104. PubMed ID: 24726773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.
    Altmann J; Rehfeld D; Träder K; Sperlich A; Jekel M
    Water Res; 2016 Apr; 92():131-9. PubMed ID: 26849316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic and anaerobic membrane bioreactors for municipal wastewater treatment.
    Baek SH; Pagilla KR
    Water Environ Res; 2006 Feb; 78(2):133-40. PubMed ID: 16566521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion.
    Gonzalez-Gil L; Mauricio-Iglesias M; Serrano D; Lema JM; Carballa M
    Sci Total Environ; 2018 May; 622-623():459-466. PubMed ID: 29220770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous organic carbon and nitrogen removal in an anoxic-oxic activated sludge system under various operating conditions.
    Rasool K; Ahn DH; Lee DS
    Bioresour Technol; 2014 Jun; 162():373-8. PubMed ID: 24768910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of organic synthesis wastewater using anaerobic packed bed and aerobic suspended growth bioreactors.
    Mijaylova-Nacheva P; Ramírez-Camperos E; Cuevas-Velasco S
    Water Sci Technol; 2007; 55(7):235-43. PubMed ID: 17506443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence and removal of organic micropollutants in the treatment of landfill leachate by combined anaerobic-membrane bioreactor technology.
    Xu Y; Zhou Y; Wang D; Chen S; Liu J; Wang Z
    J Environ Sci (China); 2008; 20(11):1281-7. PubMed ID: 19202865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ibuprofen removal by a microfiltration membrane bioreactor during the startup phase.
    Cornejo J; González-Pérez DM; Pérez JI; Gómez MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(4):374-384. PubMed ID: 31793382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of trace organic contaminants in wastewater sludge and their removals by anaerobic digestion.
    Yang S; Hai FI; Price WE; McDonald J; Khan SJ; Nghiem LD
    Bioresour Technol; 2016 Jun; 210():153-9. PubMed ID: 26795886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the feasibility of two hybrid MBR systems using PAC for removing macro and micropollutants.
    Alvarino T; Torregrosa N; Omil F; Lema JM; Suarez S
    J Environ Manage; 2017 Dec; 203(Pt 2):831-837. PubMed ID: 27020967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor.
    Dutta K; Lee MY; Lai WW; Lee CH; Lin AY; Lin CF; Lin JG
    Bioresour Technol; 2014 Aug; 165():42-9. PubMed ID: 24745898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combined UASB-MBR with shortcut nitrification-denitrification for energy reduction in wastewater reclamation.
    Wong FS; Fang W; Moy YP; Lin S; An Y
    Water Sci Technol; 2011; 63(9):1887-93. PubMed ID: 21902027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.