These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 26387482)

  • 1. Hyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging.
    Roxbury D; Jena PV; Williams RM; Enyedi B; Niethammer P; Marcet S; Verhaegen M; Blais-Ouellette S; Heller DA
    Sci Rep; 2015 Sep; 5():14167. PubMed ID: 26387482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Nanotube Spectral Imaging To Determine Molar Concentrations of Isolated Carbon Nanotube Species.
    Galassi TV; Jena PV; Roxbury D; Heller DA
    Anal Chem; 2017 Jan; 89(2):1073-1077. PubMed ID: 28194986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells.
    Cherukuri P; Bachilo SM; Litovsky SH; Weisman RB
    J Am Chem Soc; 2004 Dec; 126(48):15638-9. PubMed ID: 15571374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-Carbon Nanotube Complexation Affinity and Photoluminescence Modulation Are Independent.
    Jena PV; Safaee MM; Heller DA; Roxbury D
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21397-21405. PubMed ID: 28573867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy.
    Tsyboulski DA; Bachilo SM; Weisman RB
    Nano Lett; 2005 May; 5(5):975-9. PubMed ID: 15884905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Carbon Nanotube Optical Sensor Reports Nuclear Entry via a Noncanonical Pathway.
    Budhathoki-Uprety J; Langenbacher RE; Jena PV; Roxbury D; Heller DA
    ACS Nano; 2017 Apr; 11(4):3875-3882. PubMed ID: 28398031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Fluorescence Imaging in the Second Near-Infrared Window Using Carbon Nanotubes.
    Hong G; Dai H
    Methods Mol Biol; 2016; 1444():167-81. PubMed ID: 27283426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Chirality Near-Infrared Carbon Nanotube Sub-Cellular Imaging and FRET Probes.
    Langenbacher R; Budhathoki-Uprety J; Jena PV; Roxbury D; Streit J; Zheng M; Heller DA
    Nano Lett; 2021 Aug; 21(15):6441-6448. PubMed ID: 34296885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence.
    Cherukuri P; Gannon CJ; Leeuw TK; Schmidt HK; Smalley RE; Curley SA; Weisman RB
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18882-6. PubMed ID: 17135351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress in Fluorescence Imaging of the Near-Infrared II Window.
    Miao Y; Gu C; Zhu Y; Yu B; Shen Y; Cong H
    Chembiochem; 2018 Dec; 19(24):2522-2541. PubMed ID: 30247795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking and quantification of single-walled carbon nanotubes in fish using near infrared fluorescence.
    Bisesi JH; Merten J; Liu K; Parks AN; Afrooz AR; Glenn JB; Klaine SJ; Kane AS; Saleh NB; Ferguson PL; Sabo-Attwood T
    Environ Sci Technol; 2014; 48(3):1973-83. PubMed ID: 24383993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoluminescence imaging of suspended single-walled carbon nanotubes.
    Lefebvre J; Austing DG; Bond J; Finnie P
    Nano Lett; 2006 Aug; 6(8):1603-8. PubMed ID: 16895343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules.
    Welsher K; Liu Z; Daranciang D; Dai H
    Nano Lett; 2008 Feb; 8(2):586-90. PubMed ID: 18197719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperspectral Counting of Multiplexed Nanoparticle Emitters in Single Cells and Organelles.
    Jena PV; Gravely M; Cupo C; Safaee MM; Roxbury D; Heller DA
    ACS Nano; 2022 Feb; 16(2):3092-3104. PubMed ID: 35049273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window.
    Welsher K; Sherlock SP; Dai H
    Proc Natl Acad Sci U S A; 2011 May; 108(22):8943-8. PubMed ID: 21576494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors.
    Yi H; Ghosh D; Ham MH; Qi J; Barone PW; Strano MS; Belcher AM
    Nano Lett; 2012 Mar; 12(3):1176-1183. PubMed ID: 22268625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence labeling of carbon nanotubes and visualization of a nanotube-protein hybrid under fluorescence microscope.
    Yoshimura SH; Khan S; Maruyama H; Nakayama Y; Takeyasu K
    Biomacromolecules; 2011 Apr; 12(4):1200-4. PubMed ID: 21395219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.