BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26387648)

  • 1. Copper status of exposed microorganisms influences susceptibility to metallic nanoparticles.
    Reyes VC; Spitzmiller MR; Hong-Hermesdorf A; Kropat J; Damoiseaux RD; Merchant SS; Mahendra S
    Environ Toxicol Chem; 2016 May; 35(5):1148-58. PubMed ID: 26387648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii.
    Cheloni G; Marti E; Slaveykova VI
    Aquat Toxicol; 2016 Jan; 170():120-128. PubMed ID: 26655656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii.
    Melegari SP; Perreault F; Costa RH; Popovic R; Matias WG
    Aquat Toxicol; 2013 Oct; 142-143():431-40. PubMed ID: 24113166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation.
    Shaw BJ; Al-Bairuty G; Handy RD
    Aquat Toxicol; 2012 Jul; 116-117():90-101. PubMed ID: 22480992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.
    Saison C; Perreault F; Daigle JC; Fortin C; Claverie J; Morin M; Popovic R
    Aquat Toxicol; 2010 Jan; 96(2):109-14. PubMed ID: 19883948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles.
    Reyes VC; Opot SO; Mahendra S
    Environ Toxicol Chem; 2015 Apr; 34(4):887-97. PubMed ID: 25556815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-based nanoparticles induce high toxicity in leukemic HL60 cells.
    Rodhe Y; Skoglund S; Odnevall Wallinder I; Potácová Z; Möller L
    Toxicol In Vitro; 2015 Oct; 29(7):1711-9. PubMed ID: 26028147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats.
    Lee IC; Ko JW; Park SH; Lim JO; Shin IS; Moon C; Kim SH; Heo JD; Kim JC
    Int J Nanomedicine; 2016; 11():2883-900. PubMed ID: 27366066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alleviation of copper-induced oxidative damage in Chlamydomonas reinhardtii by carbon monoxide.
    Zheng Q; Meng Q; Wei YY; Yang ZM
    Arch Environ Contam Toxicol; 2011 Aug; 61(2):220-7. PubMed ID: 20859622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.
    Xie M; Sun Y; Feng J; Gao Y; Zhu L
    Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of long-term toxicity of CuO NPs to microalgae.
    Che X; Ding R; Li Y; Zhang Z; Gao H; Wang W
    Nanotoxicology; 2018 Oct; 12(8):923-939. PubMed ID: 30182775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.
    Wang Y; Cheng ZZ; Chen X; Zheng Q; Yang ZM
    Plant Sci; 2015 Nov; 240():120-9. PubMed ID: 26475193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of calcium and EDTA on copper ion bioavailability in copper nanoparticle toxicity tests improves understanding of nano-specific effects.
    Boran H
    Toxicol Ind Health; 2020 Jul; 36(7):467-476. PubMed ID: 32962562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Chlamydomonas reinhardtii on the fate of CuO nanoparticles in aquatic environment.
    Yin E; Zhao Z; Chi Z; Zhang Z; Jiang R; Gao L; Cao J; Li X
    Chemosphere; 2020 May; 247():125935. PubMed ID: 31978663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of copper oxide nanoparticles and copper ions to zebrafish (Danio rerio) cells, embryos and fry.
    Thit A; Skjolding LM; Selck H; Sturve J
    Toxicol In Vitro; 2017 Dec; 45(Pt 1):89-100. PubMed ID: 28818407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.
    Regier N; Cosio C; von Moos N; Slaveykova VI
    Chemosphere; 2015 Jun; 128():56-61. PubMed ID: 25655819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles.
    Lee IC; Ko JW; Park SH; Shin NR; Shin IS; Moon C; Kim JH; Kim HC; Kim JC
    Part Fibre Toxicol; 2016 Oct; 13(1):56. PubMed ID: 27788687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of CRR1-targeted copper deficiency response in
    Wang S; Lv J; Zhang S
    Nanotoxicology; 2019 May; 13(4):447-454. PubMed ID: 30704326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.