BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 26387765)

  • 1. Estimation of tetrabromobisphenol A (TBBPA) percutaneous uptake in humans using the parallelogram method.
    Knudsen GA; Hughes MF; McIntosh KL; Sanders JM; Birnbaum LS
    Toxicol Appl Pharmacol; 2015 Dec; 289(2):323-9. PubMed ID: 26387765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dermal disposition of Tetrabromobisphenol A Bis(2,3-dibromopropyl) ether (TBBPA-BDBPE) using rat and human skin.
    Knudsen GA; Hughes MF; Birnbaum LS
    Toxicol Lett; 2019 Feb; 301():108-113. PubMed ID: 30481582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and excretion of Tetrabromobisphenol A in male Wistar rats following subchronic dermal exposure.
    Yu Y; Xiang M; Gao D; Ye H; Wang Q; Zhang Y; Li L; Li H
    Chemosphere; 2016 Mar; 146():189-94. PubMed ID: 26716882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP).
    Knudsen GA; Hughes MF; Sanders JM; Hall SM; Birnbaum LS
    Toxicol Appl Pharmacol; 2016 Nov; 311():117-127. PubMed ID: 27732871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo assessment of dermal adhesion, penetration, and bioavailability of tetrabromobisphenol A.
    Yu Y; Li L; Li H; Yu X; Zhang Y; Wang Q; Zhou Z; Gao D; Ye H; Lin B; Ma R
    Environ Pollut; 2017 Sep; 228():305-310. PubMed ID: 28550799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants.
    Abdallah MA; Pawar G; Harrad S
    Environ Int; 2015 Nov; 84():64-70. PubMed ID: 26232142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicokinetics of tetrabromobisphenol a in humans and rats after oral administration.
    Schauer UM; Völkel W; Dekant W
    Toxicol Sci; 2006 May; 91(1):49-58. PubMed ID: 16481339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of dose, route, and repeated dosing on the disposition and kinetics of tetrabromobisphenol A in male F-344 rats.
    Kuester RK; Sólyom AM; Rodriguez VP; Sipes IG
    Toxicol Sci; 2007 Apr; 96(2):237-45. PubMed ID: 17234645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian toxicology and human exposures to the flame retardant 2,2',6,6'-tetrabromo-4,4'-isopropylidenediphenol (TBBPA): implications for risk assessment.
    Colnot T; Kacew S; Dekant W
    Arch Toxicol; 2014 Mar; 88(3):553-73. PubMed ID: 24352537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption, distribution, metabolism and excretion of intravenously and orally administered tetrabromobisphenol A [2,3-dibromopropyl ether] in male Fischer-344 rats.
    Knudsen GA; Jacobs LM; Kuester RK; Sipes IG
    Toxicology; 2007 Jul; 237(1-3):158-167. PubMed ID: 17582672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrabromobisphenol A: Disposition, kinetics and toxicity in animals and humans.
    Yu Y; Yu Z; Chen H; Han Y; Xiang M; Chen X; Ma R; Wang Z
    Environ Pollut; 2019 Oct; 253():909-917. PubMed ID: 31351299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice.
    Hendriks HS; Koolen LA; Dingemans MM; Viberg H; Lee I; Leonards PE; Ramakers GM; Westerink RH
    Arch Toxicol; 2015 Dec; 89(12):2345-54. PubMed ID: 25253649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excretion characteristics of tetrabromobisphenol-A in Wistar rats following mouth and nose inhalation exposure.
    Yu Y; Wang Z; Wang Q; Xiang M; Zhang Y; Ge Q; Li L; Li H; Ma R
    Chemosphere; 2017 May; 175():147-152. PubMed ID: 28211328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomonitoring Equivalents (BEs) for tetrabromobisphenol A.
    Hays SM; Kirman CR
    Regul Toxicol Pharmacol; 2019 Mar; 102():108-114. PubMed ID: 30593853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of the flame retardant tetrabromobisphenol-A (TBBPA) by freshwater microalgae.
    Peng FQ; Ying GG; Yang B; Liu YS; Lai HJ; Zhou GJ; Chen J; Zhao JL
    Environ Toxicol Chem; 2014 Aug; 33(8):1705-11. PubMed ID: 24687216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate and O-methylating detoxification of Tetrabromobisphenol A (TBBPA) in two earthworms (Metaphire guillelmi and Eisenia fetida).
    Chen X; Gu J; Wang Y; Gu X; Zhao X; Wang X; Ji R
    Environ Pollut; 2017 Aug; 227():526-533. PubMed ID: 28499262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high dose mode of action for tetrabromobisphenol A-induced uterine adenocarcinomas in Wistar Han rats: A critical evaluation of key events in an adverse outcome pathway framework.
    Wikoff DS; Rager JE; Haws LC; Borghoff SJ
    Regul Toxicol Pharmacol; 2016 Jun; 77():143-59. PubMed ID: 26828025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TBBPA disposition and kinetics in pregnant and nursing Wistar Han IGS rats.
    Knudsen GA; Hall SM; Richards AC; Birnbaum LS
    Chemosphere; 2018 Feb; 192():5-13. PubMed ID: 29091796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of neurotoxicity and lack of neurobehavioral consequences due to exposure to tetrabromobisphenol A (TBBPA) exposure in humans, animals and zebrafish.
    Kacew S; Hayes AW
    Arch Toxicol; 2020 Jan; 94(1):59-66. PubMed ID: 31758204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term exposure of European flounder (Platichthys flesus) to the flame-retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD).
    Kuiper RV; Cantón RF; Leonards PE; Jenssen BM; Dubbeldam M; Wester PW; van den Berg M; Vos JG; Vethaak AD
    Ecotoxicol Environ Saf; 2007 Jul; 67(3):349-60. PubMed ID: 17258806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.