BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26387835)

  • 1. Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly.
    Morimoto Y; Hsiao AY; Takeuchi S
    Adv Drug Deliv Rev; 2015 Dec; 95():29-39. PubMed ID: 26387835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications.
    Mihaila SM; Popa EG; Reis RL; Marques AP; Gomes ME
    Biomacromolecules; 2014 Aug; 15(8):2849-60. PubMed ID: 24963559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications.
    Lee GH; Lee JS; Wang X; Lee SH
    Adv Healthc Mater; 2016 Jan; 5(1):56-74. PubMed ID: 25880830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-laden microfibers for bottom-up tissue engineering.
    Onoe H; Takeuchi S
    Drug Discov Today; 2015 Feb; 20(2):236-46. PubMed ID: 25448757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Fabrication and Modular Assembly of 3D Heterogeneous Microscale Tissues.
    Yang W; Yu H; Li G; Wang Y; Liu L
    Small; 2017 Feb; 13(5):. PubMed ID: 27862956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of viable centimeter-sized 3D tissue constructs with microchannel conduits for improved tissue properties through assembly of cell-laden microbeads.
    Luo H; Chen M; Wang X; Mei Y; Ye Z; Zhou Y; Tan WS
    J Tissue Eng Regen Med; 2014 Jun; 8(6):493-504. PubMed ID: 22761157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of centimeter-sized 3D constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft.
    Yang G; Mahadik B; Choi JY; Yu JR; Mollot T; Jiang B; He X; Fisher JP
    Acta Biomater; 2021 Feb; 121():204-213. PubMed ID: 33271356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip.
    Wei D; Sun J; Bolderson J; Zhong M; Dalby MJ; Cusack M; Yin H; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14606-14617. PubMed ID: 28157291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular building unit integrated with microstrand-shaped bacterial cellulose.
    Hirayama K; Okitsu T; Teramae H; Kiriya D; Onoe H; Takeuchi S
    Biomaterials; 2013 Mar; 34(10):2421-7. PubMed ID: 23332319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends.
    Oliveira SM; Reis RL; Mano JF
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):842-55. PubMed ID: 26025038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.
    Hsiao AY; Okitsu T; Onoe H; Kiyosawa M; Teramae H; Iwanaga S; Kazama T; Matsumoto T; Takeuchi S
    PLoS One; 2015; 10(3):e0119010. PubMed ID: 25734774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.
    Zhang X; Meng Z; Ma J; Shi Y; Xu H; Lykkemark S; Qin J
    Small; 2015 Aug; 11(30):3666-75. PubMed ID: 25920010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-up biofabrication using microfluidic techniques.
    Nie M; Takeuchi S
    Biofabrication; 2018 Sep; 10(4):044103. PubMed ID: 30182928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell patterning technologies for organotypic tissue fabrication.
    Guillotin B; Guillemot F
    Trends Biotechnol; 2011 Apr; 29(4):183-90. PubMed ID: 21256609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-laden microfluidic microgels for tissue regeneration.
    Jiang W; Li M; Chen Z; Leong KW
    Lab Chip; 2016 Nov; 16(23):4482-4506. PubMed ID: 27797383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic hydrogels for tissue engineering.
    Huang GY; Zhou LH; Zhang QC; Chen YM; Sun W; Xu F; Lu TJ
    Biofabrication; 2011 Mar; 3(1):012001. PubMed ID: 21372342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogels and microtechnologies for engineering the cellular microenvironment.
    Gauvin R; Parenteau-Bareil R; Dokmeci MR; Merryman WD; Khademhosseini A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(3):235-46. PubMed ID: 22144036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel strategies to engineering biological tissue in vitro.
    Urciuolo F; Imparato G; Guaccio A; Mele B; Netti PA
    Methods Mol Biol; 2012; 811():223-44. PubMed ID: 22042683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.