BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26387835)

  • 21. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs.
    Du Y; Lo E; Ali S; Khademhosseini A
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9522-7. PubMed ID: 18599452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs.
    Ghorbanian S; Qasaimeh MA; Akbari M; Tamayol A; Juncker D
    Biomed Microdevices; 2014 Jun; 16(3):387-95. PubMed ID: 24590741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface-directed assembly of cell-laden microgels.
    Du Y; Ghodousi M; Lo E; Vidula MK; Emiroglu O; Khademhosseini A
    Biotechnol Bioeng; 2010 Feb; 105(3):655-62. PubMed ID: 19777588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.
    McMurtrey RJ
    J Neural Eng; 2014 Dec; 11(6):066009. PubMed ID: 25358624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microscale methods to assemble mammalian cells into tissue-like structures.
    Gong P; Zheng W; Xiao D; Jiang X
    Sci China Life Sci; 2012 Oct; 55(10):862-71. PubMed ID: 23108863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofabrication of multi-material anatomically shaped tissue constructs.
    Visser J; Peters B; Burger TJ; Boomstra J; Dhert WJ; Melchels FP; Malda J
    Biofabrication; 2013 Sep; 5(3):035007. PubMed ID: 23817739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Application of Microfluidic Techniques on Tissue Engineering in Orthopaedics.
    Wang L; Jiang D; Wang Q; Wang Q; Hu H; Jia W
    Curr Pharm Des; 2018; 24(45):5397-5406. PubMed ID: 30827230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfabrication and microfluidics for muscle tissue models.
    Uzel SG; Pavesi A; Kamm RD
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):279-93. PubMed ID: 25175338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineered 3D tissue models for cell-laden microfluidic channels.
    Song YS; Lin RL; Montesano G; Durmus NG; Lee G; Yoo SS; Kayaalp E; Haeggström E; Khademhosseini A; Demirci U
    Anal Bioanal Chem; 2009 Sep; 395(1):185-93. PubMed ID: 19629459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions.
    Ouyang L; Yao R; Chen X; Na J; Sun W
    Biofabrication; 2015 Feb; 7(1):015010. PubMed ID: 25691496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-laden microfluidic microgels for tissue regeneration.
    Jiang W; Li M; Chen Z; Leong KW
    Lab Chip; 2016 Nov; 16(23):4482-4506. PubMed ID: 27797383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers.
    Chen M; Wang X; Ye Z; Zhang Y; Zhou Y; Tan WS
    Biomaterials; 2011 Oct; 32(30):7532-42. PubMed ID: 21774980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering.
    Suri S; Schmidt CE
    Tissue Eng Part A; 2010 May; 16(5):1703-16. PubMed ID: 20136524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-phase, surface tension-based fabrication method for generation of tumor millibeads.
    Pradhan S; Chaudhury CS; Lipke EA
    Langmuir; 2014 Apr; 30(13):3817-25. PubMed ID: 24617794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Additive manufacturing techniques for the production of tissue engineering constructs.
    Mota C; Puppi D; Chiellini F; Chiellini E
    J Tissue Eng Regen Med; 2015 Mar; 9(3):174-90. PubMed ID: 23172792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering.
    Lin YH; Yang YW; Chen YD; Wang SS; Chang YH; Wu MH
    Lab Chip; 2012 Mar; 12(6):1164-73. PubMed ID: 22322420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.
    Billiet T; Gevaert E; De Schryver T; Cornelissen M; Dubruel P
    Biomaterials; 2014 Jan; 35(1):49-62. PubMed ID: 24112804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review of microfabrication and hydrogel engineering for micro-organs on chips.
    Verhulsel M; Vignes M; Descroix S; Malaquin L; Vignjevic DM; Viovy JL
    Biomaterials; 2014 Feb; 35(6):1816-32. PubMed ID: 24314552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered micro-objects as scaffolding elements in cellular building blocks for bottom-up tissue engineering approaches.
    Leferink A; Schipper D; Arts E; Vrij E; Rivron N; Karperien M; Mittmann K; van Blitterswijk C; Moroni L; Truckenmüller R
    Adv Mater; 2014 Apr; 26(16):2592-9. PubMed ID: 24395427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel.
    Xu Y; Wang X
    Biotechnol Bioeng; 2015 Aug; 112(8):1683-95. PubMed ID: 25727058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.